
Team-LRN

Team-LRN

������������

Want to learn more?
We hope you enjoy this
McGraw-Hill eBook! If

you’d like more information about this book,
its author, or related books and websites,
please click here.

Team-LRN

http://dx.doi.org/10.1036/007144288X

MODELING FINANCIAL
MARKETS
Using Visual Basic.NET and Databases
to Create Pricing, Trading, and
Risk Management Models

BENJAMIN VAN VLIET

ROBERT HENDRY

McGraw-Hill
New York Chicago San Francisco Lisbon
London Madrid Mexico City Milan
New Delhi San Juan Seoul
Singapore Sydney Toronto

Team-LRN

http://dx.doi.org/10.1036/007144288X

the United States of America. Except as permitted under the United States Copyright Act
of 1976, no part of this publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior written
permission of the publisher.

0-07-144288-X

The material in this eBook also appears in the print version of this title: 0-07-141772-9

All trademarks are trademarks of their respective owners. Rather than put a trademark
symbol after every occurrence of a trademarked name, we use names in an editorial
fashion only, and to the benefit of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they have
been printed with initial caps.
McGraw-Hill eBooks are available at special quantity discounts to use as premiums and
sales promotions, or for use in corporate training programs. For more information, please
contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-
4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and
its licensors reserve all rights in and to the work. Use of this work is subject to these
terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer,
reproduce, modify, create derivative works based upon, transmit, distribute, disseminate,
sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior
consent. You may use the work for your own noncommercial and personal use; any other
use of the work is strictly prohibited. Your right to use the work may be terminated if
you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS
MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY,
ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM
USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE
ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND
EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill
and its licensors do not warrant or guarantee that the functions contained in the work will
meet your requirements or that its operation will be uninterrupted or error free. Neither
McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy,
error or omission, regardless of cause, in the work or for any damages resulting
therefrom. McGraw-Hill has no responsibility for the content of any information
accessed through the work. Under no circumstances shall McGraw-Hill and/or its
licensors be liable for any indirect, incidental, special, punitive, consequential or similar
damages that result from the use of or inability to use the work, even if any of them has
been advised of the possibility of such damages. This limitation of liability shall apply to
any claim or cause whatsoever whether such claim or cause arises in contract, tort or
otherwise.

DOI: 10.1036/007144288X

Copyright © 2004 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in

Team-LRN

http://dx.doi.org/10.1036/007144288X

C O N T E N T S

Acknowledgments v

SECTION ONE

Trading System Development 1

1 Introduction 3
2 Development Methodology 11

SECTION TWO

Introduction to VB.NET: Algorithm Development 31

3 Getting Started with VB.NET 33
4 Value Types and Operators 47
5 Control Structures 65
6 Procedures 81
7 Objects 109
8 Arrays 133
9 Problem Solving 151

10 .NET Type System 171

SECTION THREE

Database Programming: Back Testing 185

11 Relational Databases 187
12 ADO.NET 201
13 Structured Query Language 219
14 Introduction to Data Structures 243
15 Advanced Data Structures 257

iii

For more information about this title, click here.

Team-LRN

http://dx.doi.org/10.1036/007144288X

SECTION FOUR

Advanced VB.NET: Implementation 269

16 Software Connectivity and Interoperability 271
17 Connecting to Trading Software 281
18 XML 301
19 XML Protocols in Financial Markets 323

SECTION FIVE

Object-Oriented Programming: Risk Management 341

20 Unified Modeling Lanaguage 343

References 379
Acronyms 383
Index 385

iv Contents

Team-LRN

A C K N O W L E D G M E N T S

Andrew Kumiega, Nithiphong Vikitset, Anton Karadakov, David
Norman, Keith Black, Pamela Reardon, Alex Deitz, MelanieWinter,
Siriporn Treetanasawat, Mulianto The, Debbie Cernauskas,
Michael Modica, Jerold Lavin, Duana Wooters, Thomas E.
“Burma” Shea, Sagy Mintz, Kenneth M. Horjus, Mark McCracken,
Julia Spaulding, Dave Kuipers, Rich Pombonyo, Paresh Akbari,
Cliff Ensing, Brain Huyser, Mark Groenenboom, Bruce Rawlings,
Gary Lahey, Hank Perrit, Jack Wing, Varsha Pitre, Michael Ubis,
Jason Malkin, and Irma Baines.

v

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

This page intentionally left blank.

Team-LRN

S E C T I O N O N E

Trading System
Development

I project that, [in the next ten years], the majority of money
managers will completely automate their trade entry decisions. . . .
So, in the very near future, if you have a mouse in your hand,
you will be too late.

Blair Hull

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

This page intentionally left blank.

Team-LRN

C H A P T E R 1

Introduction

Although this book follows the layout of a programming book, the
underlying theme is financial modeling and quantitative trading
system development. In a sense, this book really marries four
disciplines—computer science, quantitative finance, trading strat-
egy, and quality development—into one, financial engineering. The
following chapter, Chapter 2, outlines the Kumiega–Van Vliet
Trading System Development Methodology, which as you will see
provides the underlying structure for the rest of the book. As the
chapters progress, we present gradually more complex program-
ming ideas along with mathematics and trading applications to
illustrate the steps along the Kumiega–Van Vliet paradigm. So this
book is not just about Visual Basic.NET (VB.NET) and databases. It
is about modeling financial instruments in code and putting the
pieces, or models, together to create an automated trading or risk
management system using a programming language, which in this
case is VB.NET. Let’s get started.

Financial markets are in a constant state of evolution, from
buttonwood trees to trading floors to computer screens. Over the
last 40 years, owing to the invention of computers and the
development of quantitative tools for market analysis, the pace of
this change has increased dramatically. The revolution in
derivatives market analysis really got into full swing in the early
1970s when, soon after the Chicago Board Options Exchange
(CBOE) began listing options on equities, Texas Instruments
developed a calculator to price options using the Black-Scholes
formula (Berstein, 1996, pp. 310–316). Over the coming years, one
major outcome of this revolution may very well be a complete

3

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

automation of the trading process (Norman, 2001, p. 236). In the
future, computerized investment models and trading algorithms
and instantaneous trade execution could render human traders
completely obsolete (Van Vliet and Kumiega, 2000).

Human traders, using strategies based on technical indicators,
fundamental factors, or even plain old market savvy, are becoming
increasingly scarce. More and more each day financial engineers
are quantifying trading systems that can watch hundreds of
securities and derivatives in real time and execute hundreds of
strategies instantaneously and simultaneously. The trend that
started decades ago with Moore’s law (a doubling of speed in
computer processing power about every 18 months), coupled with
the decreased cost of technology andmarket data, means that in the
future all profitable trading strategies may be, through mathema-
tics and statistics, quantifiable and programmable.

The equities trading industry caught on several years ago with
program trading and index arbitrage, using computers to generate
hundreds of orders simultaneously. The options exchanges,
however, have in the past prohibited automated order entry in an
effort to protect market makers. But it appears now that such rules
may very well be abolished in the near future, if they have not
already been by the time this book is published. The Boston
Options Exchange (BOX), which will be opening for business in
mid-2003, currently has no bylaw prohibiting automated order
entry, which will likely have the effect of forcing the other options
exchanges to amend their rules.

Whatever the future holds, however, make no mistake—the
trading game will be as it always has been: The first person, or
computer, to recognize a profitable opportunity and execute a trade
wins. It’s just that being first is no longer measured in the split
seconds it takes to click your mouse button, but rather the
milliseconds it takes a computer to react. The financial engineer
who can program a computer to recognize profitable trading
opportunities and execute trades is really the trader of the future
(Van Vliet and Kumiega, 2000).

In the trading industry, a key job performed by financial
engineers, among other things, is to formalize trading strategies
based upon quantitative research, back-test algorithms against

4 Trading System Development

Team-LRN

historical data, construct or supervise construction of necessary
software for automation of order execution, and, after implemen-
tation, manage the risk of the trading system. Of course, not all
these duties are always performed by just one person, but rather,
usually, by a team of financial engineers and programmers.

If you intend to have a career in trading in the financial
markets, you will likely work on such a team, which will require
that at some point you will be required to either write computer
code yourself, manage programmers, or work and interact with
programmers on projects. This will necessitate an understanding
of, at the least, Microsoft Excel spreadsheet and the Visual Basic for
Applications (VBA) environment, but likely also Visual Basic.NET
or a higher-level language such as C/Cþþ or Java. In addition you
will need to understand how databases are constructed and
accessed using computer code to do financial research and develop
trading and risk management algorithms and systems.

All financial research requires data, and the efficient manage-
ment and storage of data is crucial to the profitable operation of a
trading system. “Data is the lifeblood of electronic markets,” as
David Norman states in his book Professional Electronic Trading
(2002). Industrial-strength relational database management sys-
tems, such as Oracle or MS SQL Server, can store gigabytes of such
things as historical market data and firmwide trade and position
information (Norman, 2001). Often, historical market data is sim-
ply the opening, high, low, and closing prices or other time-
incremented data such as implied volatilities, but it could also be
more qualitative, economic, or fundamental data such as earnings
report data, stock splits, or Fed actions. Whatever the case, analysis
of data requires not only the knowledge of quantitative methods,
but also the programming tools to implement that analysis in a real-
life environment. This book addresses topics that are critical to
these aspects of trading system development.

Top financial engineers estimate that only a fraction of
financial engineering actually deals with mathematics. The lion’s
share of time applies to the actual construction and analysis of
models and forecasts and technology development.

This majority of a financial engineer’s time engaged in
construction, though, is not simply spent coding. Rather, the entire

Introduction 5

Team-LRN

development process requires this amount of effort; actual time
spent coding should be just a part of it. As you grow in your
understanding of programming and trading and/or risk manage-
ment system development, you will become increasingly aware
that comprehensive blueprints, or plans, or development method-
ologies, of a project must be laid out before any nails are hammered
or computer keys pressed. The value of a development paradigm
cannot be underestimated.

A good methodology, though, does not mean that an
engineered trading system is infallible. Not every trade and not
every system makes money. There are certainly dozens, if not
thousands, of examples or anecdotes trotted out by “nonquant”
market participants that attempt to disprove the ability of
automated systems to outperform human traders over the long
run. To be sure, the markets are “replete with examples of ‘fat
tails’—unusual and extreme price swings that, based on a reading
of previous prices, would have seemed implausible” according to
Roger Lowenstein in his book When Genius Failed (2000, p. 229). In
the past, quantitative systems, like that of Long Term Capital
Management, which were built on historical data have blown up
quite spectacularly during financial meltdowns, or tenth standard
deviation events, when all correlations go to 1, as they say. But we
don’t stop engineering bridges just because one in London fell
down. Nomatter what anybody says, using a bridge to cross a river
is still an improvement on taking a boat across. Over time, with
more experience and better engineering, financial models and
forecasting will improve and become more able to weather those
once-a-millennium floods that seem to come around every couple
of years. A computer can’t beat Kasparov at chess yet. But give it a
few more years. Our money is with Deep Blue, or Deep Junior as
the case may be, over the long haul.

The real strategy for quantitative trading systems is to know
ahead of time, through research, the probability of the success of a
particular trade or series of trades, and assuming the odds are in
your favor, to play as often as possible, all the while keeping a close
eye on risk and the changing tradewinds (Lowenstein, 2000, p. 134).

Developing a profitable trading system is no small task,
however. One options trader we talked to estimates that it takes a

6 Trading System Development

Team-LRN

$10 million investment just to get in the game. That $10 million
pays for building a network infrastructure, hiring high-level
quantitative analysts and programmers, and conducting at least a
year of research and development before you even make your first
trade. Much of this expense, though, may be dedicated to creating
and installing proprietary software and hardware that connects to
exchanges through their application programming interfaces
(APIs). APIs can be thought of as “pipelines” to the market over
which third parties, such as exchange member trading firms, can
access exchange data and place orders electronically. Installing
and maintaining a communications network for data and
order execution, however, involves a terrible tangle of inter-
connecting hubs, routers, switches, and fiber optics, not to mention
constant software redevelopment as exchanges upgrade their APIs
(Norman, 2001).

Rather than incurring the time and expense it takes to build
from scratch, it is also possible and much less capital-intensive to
license third-party trading software and take advantage of the
exchange connections and built-in functionality for data feeds,
order entry, and risk management. Then proprietary analytics and
trading algorithms can be added on top of this software via their
own APIs. Many of these third-party vendors have over 10 years’
experience building front-end systems for futures and options
traders and are, in terms of development, well ahead of even some
major U.S. trading houses (Norman, 2001).

In this book, we will show you how to use Visual Basic.NET
and several quantitative tools to begin development of some
trading strategies and to analyze data, and we will share some
ideas about how to connect to industry software via APIs to
monitor financial markets and execute trades. Figure 1.1 shows
graphically how to implement a trading system in this way. In this
figure the arrows represent APIs.

One limitation to this architecture, however, is that no
single front-end trading system connects to all markets around the
world. So it may necessary to create proprietary software that
connects to a multiplicity of front-end trading system APIs to
provide access to all the different markets and products (Norman,
2001, p. 175).

Introduction 7

Team-LRN

The term front-end trading system refers to the “client
workstation [and software], or order entry point, on the exchange
member local area network (LAN) that a trading firm uses to access
electronic exchange services” (Norman, 2001, p. 242). An exchange
“back end” is the point where an electronic order reaches the
exchange and passes through to the exchange’s matching engine
(Norman, 2001, p. 242). Electronically routed orders pass from a
firm’s front end to the exchange back end and then, once the trade
has been executed, again to the front end as a trade-fill confirmation
(Norman, 2001, p. 243).

In derivatives markets, related products are often traded on
different markets. For example, Dow futures trade on the Chicago
Board of Trade, S&P 500 futures trade on the Chicago Mercantile
Exchange, and S&P 500 cash options trade on the Chicago Board
Options Exchange. Shares of IBM stock trade on the NYSE and

F I G U R E 1.1

8 Trading System Development

Team-LRN

other stock exchanges, while IBM stock futures trade on One
Chicago and NQLX and options on IBM trade on the various
options exchanges. Given the disparate technological infrastruc-
tures and trading rules for the different exchanges, connecting to all
of them for automated trading of related products can be somewhat
of a nightmare.

So as you may be able to see from Figure 1.1, it is possible, for
example, to build an automatic hedging device through the type of
framework we described. MicroHedge is a popular institutional
software package with connections to the options markets. And
Trading Technologies’ X_Trader software is a popular front-end
software system for futures trading on electronic markets. Thus, we
could create a system to trade the CBOE’s S&P 500 cash options, via
a market connection through MicroHedge’s API, that could also
provide real-time delta hedging with the E-Mini S&P contract on
the Chicago Mercantile Exchange via connection to Trading
Technologies’ API (Norman, 2001).

As we mentioned earlier, there are four disciplines that go into
automated trading strategy development: computer science,
quantitative finance, trading strategy, and quality development.
This is a lot to learn.We do not attempt teach you all of it. Rather we
bring together some important ideas frommath, technology, project
management, and the financial markets that are required to build a
real-world automated trading system.

Introduction 9

Team-LRN

This page intentionally left blank.

Team-LRN

C H A P T E R 2

Development Methodology

So what is an automated trading or risk management system, and
what process do we go through to create one?

A trading or risk management system, as we define it, consists
of the rules for automated entry into and exit from a position or
positions and the technology used to make them happen. These
rules are a set of logical or mathematical operations that can be
based upon qualitative, technical, or quantitative research. Many
books and papers currently available outline stock and futures
trading system development from a purely technical analysis
standpoint, often using a retail software package to optimize a set
of trading rules based upon moving averages and oscillators. In
this book, however, we will focus on quantitative analysis of
equities, equity indexes, and options on equities and the
programming of professional, proprietary software using Visual
Basic.NET.

Several steps are involved in creating a quantitatively based
trading system, and while clearly not exhaustive since there are
literally an infinite number of potential quantifiable trading
strategies, this book presents some of the necessary steps to create
an automated system, with lots of code examples along the way.
Before we begin, however, we should define the steps to go through
or the process of creating an automated system.

In their paper “An Automated Trading System Develop-
ment Methodology” (2003), Andrew Kumiega and Ben Van Vliet
propose a process for trading system development that consists of
four phases: research and documentation of calculations, back
testing, implementation, and portfolio and risk management.

11

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

KUMIEGA–VAN VLIET TRADING SYSTEM
DEVELOPMENT METHODOLOGY

By their nature, all implemented and functioning automated
trading or risk management systems must manage two concurrent
processes: (1) trade selection and (2) portfolio and risk manage-
ment. However, prior to implementation the process of develop-
ment should follow a well-defined, well-documented flow of steps
along a development methodology. In 2001, Kumiega and Van Vliet
first proposed a software development methodology for finan-
cial markets that laid out the steps to codify trading and risk
management algorithms. This earlier model is encompassed within
this broader methodology, which outlines an entire trading system
development paradigm.

Kumiega and Van Vliet propose a standardized model for the
development of automated trading systems that will ensure
rapidity, desired by senior management, and consistent quality
standards, desired by financial engineers. While the idiosyncrasies
of the securities and derivatives trading industries require a unique
system development paradigm, this methodology owes a large
portion of its structure to a combination of the traditional waterfall
model (Royce, 1970) and the evolutionary spiral models (Boehm,
1988). The combination of these two models seeks to gain from
their respective strengths as well as to overcome their respective
weaknesses.

Waterfall Methodology

The traditional waterfall model is a very powerful software
development methodology and consists of four phases that, in
general, map to the four phases of the Kumiega–Van Vliet model—
analysis, design, implementation, and ongoing system testing. At
the completion of each phase, the waterfall model requires a
decision by management prior to advancing to the next phase. This
decision is whether or not to continue development of the system
based upon the potential for profitable implementation.

In a nutshell, the waterfall model forces financial engineers to
think about the system to be built and to come up with a plan for
building it, before they begin construction. By following this model,

12 Trading System Development

Team-LRN

we can force ourselves to use a disciplined approach to the process
of development and to avoid the pitfalls of creating a system and
writing computer code before the blueprints of the project are well
defined and precisely laid out.

The waterfall methodology does have a major drawback
though: It puts too much emphasis on planning. The waterfall
model necessitates that all details and all plans be defined up front
before design and implementation begin. That is to say, there is no
room for error and no process for handling feedback or problems
that occur down the road. In the fast-moving financial markets,
where trading opportunities come and go quickly, the waterfall
model may not be able to react quickly enough.

As an example, suppose we find in an implementation phase
that a coherent trading idea will be impossibly complex in terms of
the technology needed to make it happen. As a result the project
fails. Had the financial engineers been aware of this fact in the
analysis phase, they may have been able to modify the system
design so as to enable successful construction. The waterfall model
has no way of handling these types of situations. Furthermore,
technology these days is changing just about as fast as the market
itself. The danger with the waterfall methodology is that by the
time a trading system is ready for implementation, the technology
it was built on may be obsolete and there may be a better, faster,
easier technology already on the market.

To overcome the shortcomings of the waterfall model, the
spiral model was developed.

Spiral Methodology

In the spiral methodology a small amount of time is initially
devoted to each of four phases: research, planning, implemen-
tation, and testing, followed by several repetitive iterations or
cycles over each of them.

As the cycles progress and the spiral gets larger, more detail
and refinement are gained in each phase. At some final point, it is
hoped, each phase will be complete.

In this way, the spiral method allows for feedback as problems
in the system are detected. A problem can be dealt with either by

Development Methodology 13

Team-LRN

correcting it or, if the problem is fatal, by scrapping the entire
trading idea. Of course, the truly fatal problem is the prospect of
losses. If the system cannot or will not be profitable, for whatever
reason, it will be discarded. So intermittent or prototype
implementations can provide feedback about the viability and
profitability of the trading system. Also, as new discoveries in
quantitative methods and system design are made, the system’s
blueprints can incorporate them as they arise.

As with the waterfall method, the spiral method is not without
its drawbacks. The primary problem with the spiral methodology
is that the number of cycles can grow without end, using up
resources. There are no inherent constraints or deadlines. This can
lead to loss of project focus, messy logic, and extraneous or
unnecessary digressions. This is often called scope creep, when the
scope of the projects gets continuously larger.

As a result, the blueprints may never present a clear and
concise architecture of the trading system. So in the spiral model,
the cycling process must have a clear condition for termination.
This lack of termination is common in Excel-based trading systems.

To overcome the problems with each of these methodologies,
Kumiega and Van Vliet have combined them into a single
paradigm for trading system development. As Figure 2.1
illustrates, the four phases progress in a traditional waterfall, but
within each phase, four elements are connected into a spiral
structure. At the completion of each phase, management must
make a decision before proceeding to the next phase. After
completing the fourth and final phase, the methology calls for
financial engineers to repeat the entire waterfall process for
continuous improvement. The phases are as follows:

Phase I. Research and Document Calculations
1. Describe trading idea.
2. Research quantitative methods.
3. Prototype in Excel.
4. Check profitability.

Phase II. Back-Test
1. Gather data.
2. Clean data.
3. Perform in-sample/out-of-sample test.

14 Trading System Development

Team-LRN

4. Check profitability.
Phase III. Implement

1. Build vision and scope document.
2. Build objects and program document.
3. Program and document the system.
4. Paper-trade and check profitability.

Phase IV. Manage Portfolio and Risk
1. Monitor portfolio statistics.
2. Perform value-at-risk calculations.
3. Document profit and loss attribution.
4. Determine causes of variation in profitability.

Repeat the entire waterfall process for continuous improvement.

Here is some brief discussion on the 16 elements listed in the
Kumiega–Van Vliet methodology.

F I G U R E 2.1

Development Methodology 15

Team-LRN

PHASE I. RESEARCH AND DOCUMENT
CALCULATIONS

The first of the four phases consists of researching quantitative
algorithms for a trading system.

Describe Trading Idea

There is an old saying in the trading business, “Got a hunch, bet a
bunch.” As with most old sayings, this one is based more on fact
than fiction. In most human endeavors it is more fun to do than to
plan. This trait is very human and is only driven out of people by
years of schooling and life. There are two problems with planning
in finance. One problem is that most traders want to trade, not plan.
And the second problem is that most planners never get to trade
since management in financial firms mainly rise from the trading
ranks, which means they strive to optimize for the short term.

Therefore, in financial markets we have a large number of
simple systems being built again and again and again. However,
these simple systems do not result in maintainable excess returns.
We have a few firms that do actually implement their long-term
plans, and these plans do result in maintainable excess returns. The
small-sized firms that become mid-sized firms eventually end up
being sold to large firms. The few large firms that continue to build
their proprietary systems end up dominating markets. The most
interesting feature of the business is that the best trading and
money management firms seem to understand this, given the size
of their budgets for proprietary trading system development.

Complex trading systems are built one step at a time, evolving
along the way. The first step toward building a trading system is
normally the hardest one. It may seem elementary, but being able to
clearly articulate a trading idea is extremely important. Being
forced to describe an idea has the effect of clarifying your thoughts,
as well as communicating plans and defining goals and the
meaning of success. The more complex the trading idea, the more
time it takes to define and communicate it clearly.

The description of the trading idea should contain the answers
to several basic questions:

16 Trading System Development

Team-LRN

1. What market or markets will be traded?
2. What capital will be traded?

a. Short term
b. Long term
c. Midterm

3. Whose capital is it? Proprietary or investor capital?
4. Howwill success be defined? Is there a benchmark against

which to compare the results? Are there competitors
against which to compare results?
a. Best/worst/average returns for a group
b. Sharpe ratio

5. What is the strategic advantage over the competition?
a. Data
b. Calculations
c. Speed
d. Capital cost

6. What is the expected time horizon for launch of the initial
paper trading?

7. What is the expected time horizon for full-scale trading?

The goal of this stage of the project is to focus attention on the
long-term features of the trading system. As with most business
ideas, a focused, well-defined plan is essential, especially in a start-
up phase. Due to the low barriers to entry, one common situation in
the trading industry is the existence of multiple trading firms with
little or no focus and, to make matters worse, meager start-up
capital.

Research Quantitative Methods

Research into quantitative methods may be in the form of the
derivation of proprietary algorithms or the application of publicly
available research or white papers. Furthermore, this research may
also include gaining an understanding of the methodologies of
other successful systems.

To be successful at quantitative research, you should take full
advantage of the available resources such as the Internet and
libraries of academic publications. Building a proprietary library of
quantitative methods is key to long-term system and firm success.

Development Methodology 17

Team-LRN

Books and papers in this library should be cataloged by the author,
the firm, and the nature of the quantitative method discussed.

Prototype in Excel

Excel is the most rapid development environment for testing
trading ideas. However, large spreadsheets, especially those that
contain historical data, can become increasingly difficult to
document and manage.

Check Profitability

At any point in this or any other of the four stages, profitability
testing may show system failure. That is, the trading system may
not be profitable. This will necessitate a looping back to previous
stages. The goal is to quickly stop development on trading systems
that have a low probability of success.

PHASE II. BACK-TEST

A back test is a simulation of an automated trading system against
historical data. A back test determines what buys and sells would
have been made according to a prescribed set of algorithms.
Successful system analysis and design necessitates research into
past market movement as a way to analyze and validate the
system. But not only should back testing confirm the validity and
accuracy of a system’s algorithms; it must also confirm risks and
rewards of competing alternative algorithms.

Gather Data

It may seem obvious, but being able to gather the necessary market
data is very important. Oftentimes data required may not exist at
all or may be too expensive.

18 Trading System Development

Team-LRN

Clean Data

One of the major obstacles to building a profitable trading system is
the unavailability of clean and timely data. Many systems that are
dependent upon the analyses of historical data are never fully
implemented because data is either too expensive or not obtainable
altogether. Therefore, prior to starting a project, the data feeds and
their prices should be determined.

Perform In-Sample/Out-of-Sample Test

Financial engineers are keenly aware of the extent to which in-
sample results of model fitting differ from results obtained on out-
of-sample data. Trading algorithms and quantitative models must
be examined against out-of-sample data prior to moving to the
implementation stage. A well-developed system will perform
similarly out-of-sample as it does in-sample. It is of course
important to save some of your historical data for out-of-sample
testing.

Check Profitability

Again, checking the profitability of the system will prevent
additional time and resources from being spent on unprofitable
projects. We may need to loop back to the initial research phase and
reassess the quantitative methods and algorithms.

PHASE III. IMPLEMENT

Implementation of an automated trading system will require
connectivity between and interoperability with disparate software
systems for trade execution and other processes such as
optimization. This will require the creation of plans and blueprints
before programming in a language like VB.NET begins.

Development Methodology 19

Team-LRN

Build Vision and Scope Documents

The purpose of the vision and scope documents is to ensure that
management fully understands the end goal along with the
expected costs of the project before construction starts. The vision
document provides both the financial engineers assigned to the
project and management a brief overview of the current project.
The information listed on the vision document should be at a very
high level so that the entire form can be completed in a couple of
hours.

The scope document should clearly define the steps for the
project along with the documentation of all the detailed
information about a calculation. After management has approved
the initial project concept and the vision document, then the scope
document can be completed. A full-blown scope document can
range from 2 or 3 pages to over 20 pages depending on the level of
detail provided. Its design should allow for multiple revisions
along the way. This is important in finance since many of the key
items of a project get revised regularly as the details get flushed out
with prototypes.

The following samples of vision and scope documents
provide some basic information about the project in a consistent
manner from project to project.

20 Trading System Development

Team-LRN

Project 1

Vision Document

Project Leader: Andrew Kumiega Date: 03/01/03
Project Originator: Ben Van Vliet
Sponsor: Bob Hendry

Project Definition:
This section should include a one-paragraph definition of
the project.

Major Objectives:
This section should list the major objectives of the project.

Impact:
This section should define and forecast the success of the
project.

Priority/Deadline Issues:
This section should list all deadlines, known priorities, and
other issues relevant to the project.

Constraints:
This section should list any known constraints for this
project.

Analysis of Product:
This section defines how we intend to test the implemen-
tation of the completed product, including white- and
black-box testing.

Resources:
This section should list the financial engineers involved in
the project as well as other support personnel, including
additional programmers and hardware support.

Development Methodology 21

Team-LRN

Project Type: _____Formal _____Ad Hoc

Initial Priority: A B C D E

Approved By: ______________________
Approved Date: ______________________

22 Trading System Development

Team-LRN

Project 1

Scope Document

Project Leader: Andrew Kumiega Date: 03/01/03
Project Originator: Ben Van Vliet
Sponsor: Bob Hendry

Project Definition:
This section should include a one-paragraph definition of
the project. Also, the project definition should be updated as
additional specifications arise or changes to the specifica-
tions are made.

Functionalities:
The entire list of functionalities of the application should
be fully documented in this section. Beyond whatever may
be the obvious functionalities, here a few important things
to remember:

V Management will likely still want printed reports.
V Bulletproof error handling must be incorporated to

prevent trading errors due to bad data or erroneous
human interaction.

V The algorithms should be clearly explained.
V The graphical user interface, as simple as it may turn out

to be, should be fully laid out.
V A complete data dictionary should to be built along with

a data flow map.
V Speed of execution is critical for many applications, and

so competing methods of implementation may need to be
analyzed.

Steps and Milestones:
The purpose of the Steps and Milestones section is to keep
the project on track. The goal is to document at a high level
all the major steps and milestones that are required to
complete the trading system. A simple, but key, element of
the documentation of the steps is color-coding of work

Development Methodology 23

Team-LRN

items. These steps should be updated at least weekly as
progress is made on the project.

V Standard black text is used to list steps and milestones
that are progressing as planned.

V Blue text is used to show steps and milestones that have
been completed.

V Red text is used to show steps and milestones that have
stopped and are currently placing the project at risk.

V Green is used to show scope creep.

As we have discussed, scope creep can be the most
dangerous portion of a project as stakeholders request
additions to the project. Unnecessary digressions can doom
a project, and so it is important to focus on specific and
relevant functionalities. However, as is typically the case,
rejected additions will be used as an excuse if the trading
system loses money.

Future Features:
This section should describe any additional features that
should be started after the initial project is completed. The
goal of this section is to contain scope creep.

Schedule:
A schedule should be presented in this section done in
project management software such as Microsoft Project.

Detailed Documentation of Key Functionalities:
Key functionalities of the trading systems should be fully
documented—for example, data, I/O, GUIs, calculations,
error handling, and reports.

24 Trading System Development

Team-LRN

Build Objects and Program Document

Building a trading system in code is a bit like building a building.
The bigger and more complex the building, the more important
blueprints are to the success of the project. Likewise, the more
complex a trading system becomes, the more important it is to
create detailed architectural plans before construction in code
begins. But how do we create these blueprints? The answer is the
Uniform Modeling Language (UML). UML is the software
industry’s graphical language that enables project designers and
programmers to communicate the details of software design.

Through the use of UML, programming problems can be
solved in an object-oriented way before programming begins. As
you can imagine then, financial engineers who want to use UML
must be familiar with object-oriented programming and the
process of abstraction and application modeling. (Don’t worry. If
you are not familiar with these concepts, we will show you them
over the course of this book.) Models written using UML will help
us visualize and document the structure of a software application.

Program and Document the System

Having proved the trading system to be successful through in-
sample and out-of-sample testing, we proceed with the crossover
stage of the system development process. In this stage we cross
over from Excel’s cell-based environment to VB.NET by converting
the system’s functionalities into programming code.

Paper-Trade and Check Profitability

This time when we check profitability, we will have some real-time,
live data to go on. The last step prior to opening an account and
turning on a trading system is paper trading. Placing simulated
trades against real-time market data will give us a true and final
test of the potential of a trading system.

Development Methodology 25

Team-LRN

PHASE IV. MANAGE PORTFOLIO AND RISK

Apart from the simplest trading systems, no individual trade exists
in a vacuum. Rather, all the trades and subsequent positions will be
viewed as a portfolio of positions.

Monitor Portfolio Statistics

Portfolios of securities and derivatives require constant monitor-
ing. No system, no matter how well planned or well built, should
be left unattended. A system for monitoring trade limits, risk
factors such as portfolio delta and gammas, and drawdowns
should be implemented and followed strictly.

Perform Value-at-Risk Calculations

Value-at-risk calculations will give management a snapshot of the
potential losses given a portfolio. However, while methods for
dealing with extraordinary occurrences may be built into a trading
system, overnight volatility in the form of opening gaps may
render them useless.

Document Profit and Loss Attribution

A good way to monitor the success of a system is to keep track of
individual trades and their respective payoffs. These will be
valuable when reevaluating the underlying premise for the system.

Determine Causes of Variation in Profitability

Profitable trading systems will not be so forever. Eventually, the
market will close the door on our trade. So systems will need to be
continuously tweaked, and in the end scrapped.The goal here is to
quickly stop trading systems that lose their edge before they cause
losses. A successfully implemented trading system always requires
ongoing profitability assessment.

26 Trading System Development

Team-LRN

Repeat the Entire Waterfall Process for
Continuous Improvement

Continuous improvement consists of an ongoing effort toward
bettering our trading systems. When applied to a trading
environment, a continuous-improvement strategy involves both
management and financial engineers working together in trading
teams to make small improvements continuously. It is top-level
management’s responsibility to cultivate a professional environ-
ment that engenders constant improvement. A culture of sustained
ongoing improvement will focus efforts on eliminating waste in all
trading systems and processes of a trading organization. Intelligent
company leadership should guide and encourage trading teams to
continuously improve profitability, increase efficiency, and reduce
costs.

Through small innovations from research and entrepreneurial
activity, trading firms can discover breakthrough ideas. These ideas
include, among other things, the creation of new trade selection
algorithms, the application of existing systems to newmarkets, and
the implementation of new technologies for more efficient trade
execution.

SUMMARY

The advantage of the Kumiega–Van Vliet approach is that it allows
financial engineers to quickly deliver a prototype for evaluation
and specifications prototyped in Excel that are scalable into
VB.NET or some other implementation language. If the trading
system is deemed to have a high probability of long-term
profitability, financial engineers can proceed down the waterfall.

There are four distinct advantages to using this methodology
for trading system development:

1. The research and documentation stage along with its
Excel prototyping approach provides a mechanism for
documenting the system requirements and for gaining
buy-in from senior management. Financial engineers

Development Methodology 27

Team-LRN

should be able to explicitly state and demonstrate the
algorithms and profitability of a trading system prior to
implementation.

2. The iterative framework of documentation, prototyping,
and testing of intermediate-level working versions of the
system allows for feedback and reduces risks before they
become problematic.

3. This methodology allows for step-by-step testing of coded
algorithms against Excel’s built-in functions.

4. Time to market is greatly reduced since the Excel
prototype demonstrates the profitability of a system in a
short amount of time.

The process of doing quantitative research in financial
markets requires the completion of these four phases of
development resulting in four models: the algorithms model,
data model, implementation model, and risk management model.
Over the remainder of this book, each of these phases, and their
subphases, will be addressed. Along the way, we will learn a great
deal about quantitative finance, Visual Basic.NET, ADO.NET,
databases and SQL, object-oriented programming, XML, and UML.

28 Trading System Development

Team-LRN

PROBLEMS

1. When developing financial models in Visual Basic.NET,
how do we test whether or not our algorithms are correct?

2. What is a trading system?
3. What is meant by continuous improvement?
4. What are vision and scope documents?
5. What is UML used for?

Development Methodology 29

Team-LRN

This page intentionally left blank.

Team-LRN

S E C T I O N T W O

Introduction to VB.NET
Algorithm Development

The ability to learn faster than your competitors may be the
only sustainable competitive advantage.

Peter Senge

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

This page intentionally left blank.

Team-LRN

C H A P T E R 3

Getting Started with
VB.NET

In this chapter you will learn how to maneuver around the Visual
Basic.NET integrated development environment (IDE) and how to
customize it to your liking for efficient development. While we will
only be writing a smidgen of code, we will be creating a
professional-looking program and learning a few simple tech-
niques that are big time-savers.

DIFFERENT VERSIONS OF VISUAL BASIC

There are different versions of Visual Basic. This book presents the
latest version, Visual Basic.NET. If you are using Visual Basic 6.0,
we suggest you upgrade your software to take full advantage of
the .NET environment. Since many readers are probably already
familiar with VBA (Visual Basic for Applications), which is very
similar to VB 6.0, this book will be particularly valuable in
converting spreadsheets and VBA macros into professional stand-
alone software. While VB.NET does support some backward
compatibility, we have in all cases used .NET constructs and have
left COM to the scrap bin.

THE VB.NET INTEGRATED DEVELOPMENT
ENVIRONMENT

Visual Studio.NET enables you to program visually, dragging and
dropping controls, like buttons and text boxes, into place rather

33

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

than creating them in code. In this way, visual programming
greatly increases programmer productivity. Visual Studio.NETalso
includes several advanced tools for writing and debugging your
program code. Let’s jump right in.

Step 1 Before you open Visual Basic.NET, you will need to
create a separate folder on your hard drive to hold all
the files for all the projects in this book, so create a
folder called “C:\ModelingFM.”

Step 2 Now go ahead and open Visual Studio.NET.
Step 3 When the Start Page opens, click New Project.
Step 4 Give the project the name “Test” and the location of

the ModelingFM folder. Also, we will be using Visual
Basic.NET for the projects in this book, and so leave
Visual Basic Projects highlighted (see Figure 3.1), as
well as Windows Application as the template. Later
in the book we will look at some of the other
templates.

F I G U R E 3.1

34 Introduction to VB.NET

Team-LRN

When a new project is created, VB.NET automatically places
all the files associated with your new project within a folder of the
same name. So the path to your new project should be
C:\ModelingFM\Test\. If you take a look at the contents of this
folder via Window Explorer, you will notice that several files and
subfolders have been created to contain all the elements of our
project. Visual Basic.NET applications that we build consist of
several files. We will learn more about some of these files in later
chapters. For right now, just be aware that programs consist of
several files in a folder. To later reopen the project for further
development, click on the file with the .sln extension.

Let’s take a look at the VB.NET IDE that should now be visible
on your screen (see Figure 3.2). Notice that the development
environment consists of several windows, which are all either
dockable or free-floating, allowing you to customize the
environment to your liking. The form in the center, labeled
Form1, is where we will actually build the graphical user interface
(GUI) for our program.

Menu Bar

Across the top of the screen is the menu bar. Take some time to
peruse the menu bar and become familiar with the types of
commands that perform various actions. Many of these commands
also have corresponding shortcuts, through either keystrokes or
menu bar icons or both. As you will no doubt discover as you gain
experience in programming in the .NET IDE, there are often several
ways to accomplish the same task.

Toolbox

Written vertically down the left side of the screen should be the
Toolbox button. If you do not see it, click on the Toolbox icon in the
upper right-hand corner. It’s the one with a hammer and wrench in
an X-shaped design. When you open the Toolbox, you will see the
lists of tools, called controls, that you see in Figure 3.2. Wewill often

Getting Started with VB.NET 35

Team-LRN

be adding controls, by dragging and dropping them into our forms,
to rapidly build programs and GUIs. Youmaywant to spend a little
time investigating each of the tools before you proceed.

Solution Explorer Window

The Solution Explorer window, shown in the upper right corner,
enables you to access the different parts of your project. If the

F I G U R E 3.2

36 Introduction to VB.NET

Team-LRN

Solution Explorer window is not visible, click on the Solution
Explorer icon; or on themenu bar, click View and Solution Explorer.
In our applications, we almost always have several forms and
classes and program modules. The Solution Explorer gives us
instant access to any part of our project at any time. To close the
Solution Explorer, click the X button in the upper right-hand corner.

Properties Window

In the lower right corner is the Properties window. Again, if it is not
visible, click on the Properties window icon on the toolbar, or select
View and Properties Window from the menu bar.

Properties are attributes, like size and color, of the objects we
use in programs. Since each control, or tool, from our toolbox is an
object and has its own set of properties, we can see all the
properties associated with each of them in this window. You should
familiarize yourself with the different properties associated with
the different controls as we use them throughout this book. The left-
hand side of the Properties window column lists the individual
properties, and the right-hand column lists the value of each
property. You will need the Properties window to set the initial
values of these properties at design time, and as you will later see,
we can change properties at run time using VB.NET code. As with
Solution Explorer, we can close the Properties window and reopen
it from either the View menu or the menu bar icon.

As we will see in Chapter 7, other, nonvisible objects we create
in our programs will also have properties associated with them.
When we cannot see the objects, it gets slightly more difficult to
understand properties. For example, in finance, a call option could
be an object. An option object in our program would certainly have
properties, like an option symbol, strike price, expiration date, and
implied volatility.

Events

Besides properties, controls also have events associated with them.
An event is triggered when something happens to a control. The

Getting Started with VB.NET 37

Team-LRN

button “click” event is probably the most easily understandable
example of an event. Later we will learn how to program things to
happen when events are fired.

Methods

Objects, like controls, also have to perform functions of their own. It
isn’t usually enough that an object simply exists. After all, the
whole point of creating a control is that the object does something
useful. These additional functions are known as methods in Visual
Basic.NET terms. Whereas properties are thought of as nouns,
methods are often thought of as verbs. Later, we will learn how to
create our own objects and add methods to them.

Visual Studio.NET Help

There is no way that any book can hope to cover all the features of
Visual Basic.NETor all the potential instances you may uncover for
using them. Finding and solving new problems quickly is one of
the joys of programming. Fortunately, Visual Studio.NET provides
a vast array of help features. Knowing how to find what you need
in the Help files is one of the most valuable skills you can gain to
improve your expertise. Again, you should investigate the Help
files on your own and become comfortable accessing the Help
index and Dynamic Help. Most often, programming questions that
arise are covered extensively in the Help files, almost always with
code examples.

CREATING AN EXECUTABLE PROGRAM

You will write many different applications as you go through this
book. Creating an executable program allows you to run your
application as a single .exe file from the Windows environment
without having to be in the VB.NET IDE. In order to create an
executable file, VB.NET programs must be compiled into machine
language.

Compiling a VB.NET application is a two-stage process. First,
the program is compiled into Microsoft Intermediate Language

38 Introduction to VB.NET

Team-LRN

(MSIL). Then second, another compiler translates this MSIL code
into a single, executable file in machine language. In this way,
Microsoft’s .NET framework provides language interoperability.
Programs that are written in different languages, such as C#, Perl,
or Python, can all be first compiled intoMSIL. So different parts of a
program, written in different languages, can be combined to create
a single program. In fact, any .NET-compliant language can be
compiled into MSIL in this way, and thus .NET is said to be
language-independent.

Step 5 Make sure your form, known by the default name
“Form1” in your project, is active by clicking on it.
You can change the size of the form by pulling on the
highlighted corners or sides. This will automatically
cause the Size property of the form to change. Now,
in the Properties window, change the value of the
“Text” property to read “My First VB.NET Program”
without the quotation marks. When you press Enter,
you will see the title on the form change to the new
text.

Step 6 In the Toolbox, click on Label and “paint” a label on
your form by holding down the left mouse button
and dragging over the form.

Step 7 This new label is now known by the default name
Label1, as you can see in the Properties window.
Make sure the label is selected, and in the Properties
window, change the Font property to Garamond,
Bold, size 36. Also, change the Text property to Buy
Low, Sell High. Change the TextAlign property to
MiddleCenter.

Your form should now look like the one shown in Figure 3.3.

Step 8 Now to run your program, click the Start button on
the menu bar, or under the Debug tab, click Start. The
Start button is the one that looks like a blue arrow,
next to the word Debug. Your program should take a
few seconds to compile, and then it will run. You can
close the program by clicking on the X.

Getting Started with VB.NET 39

Team-LRN

Step 9 In Windows Explorer you can find the executable
program Test.exe in the Test folder, subfolder bin.
The path to the file in its entirety should be
C:\ModelingFM\Test\bin\Test.exe. If you close
down the Visual Basic.NET IDE, you can run this
executable program by double-clicking it. Fur-
thermore, you can drag the Test.exe icon onto your
Windows desktop. You can even email it to your
friends so that they never forget how to make money
in the markets.

Now let’s take a little deeper look at the VB.NET IDE.

Step 10 If you have not already done so, close the program,
so that you are back in the VB.NET IDE. In the
Solution Explorer window, click on the View Code
icon as shown in Figure 3.4.

Step 11 The Form1 code window will appear (see Figure
3.5). This is where we write VB.NET code that is
associated with the controls we place on Form1,
including code that runs when events happen, as
previously discussed.

F I G U R E 3.3

40 Introduction to VB.NET

Team-LRN

F I G U R E 3.4

F I G U R E 3.5

Getting Started with VB.NET 41

Team-LRN

In the combo boxes across the top of the code window, click on
Label1 in the left-hand combo box and open the list in the right-
hand combo box. This is a list of all the events associated with our
label, Label1. All the controls in the Toolbox have events associated
with them. When an event happens, we can add code to make
something happen.

Step 12 For example, select DoubleClick from the list of
events for Label1. Notice that VB.NETwrites a stub
of the event code for us. In the event code routine,
type Label1.Text ¼ “Sell High, Buy Low.” The
underscores you see below allow us to wrap long
lines of code onto the next line.

Private Sub Label1_DoubleClick(ByVal sender As Object, _

ByVal e As System.EventArgs) _

Handles Label1.DoubleClick

Label1.Text = "Sell High, Buy Low."

End Sub

Step 13 Run the program again. Notice that the program
runs the same as previously. But if you double-click
on the label in the form, an entirely new way to
profit in the markets appears (see Figure 3.6).

F I G U R E 3.6

42 Introduction to VB.NET

Team-LRN

SUMMARY

Visual Basic.NET makes every effort to provide us with the tools
that simplify and speed the process of creating our own
applications, or solutions as they are known in VB.NET. If you
already program in a previous version of Visual Basic, you will
notice several similarities in the new .NET IDE. If you are new to
programming, you will be able to turn out professional-looking
applications even while you are learning VB.NET.

Make sure you practice using the Help files. Practically
everything you need to know is included in there somewhere. You
might have to dig for it, but it is in there.

In the example program in this chapter, we looked at the label
control and the properties and events associated with it. We even
wrote a brief statement to change the text property when the
double-click event is fired.

Getting Started with VB.NET 43

Team-LRN

PROBLEMS

1. Where does VB.NET store the various files associated with
your program?

2. Where will you find the controls used to create a graphical
user interface?

3. If the Properties window is closed, how can you reopen it?
4. How do you create an executable program?
5. What are properties, events, and methods?

44 Introduction to VB.NET

Team-LRN

PROJECT 3.1

Create a graphical user interface like the one pictured in Figure 3.7.
Use a tab control with three tab pages named Stocks, Options, and
Futures. On the Options tab page, place 4 combo boxes with sorted
items, including 10 stock tickers, Put/Call, 12 expirations, and 10
strikes. Also, place labels on your tab forms with Fixed3D border
style and custom background colors. Name the colored labels
lblBidQty, lb1BidPrice, lb1AskPrice, lblAskQty, and lblLast. Try
adding some controls and changing the fonts to enhance the
appearance and user-friendliness of your GUI. Also, on the Stocks
and Futures tab pages, add similar content for financial instru-
ments of these types. For right now, to keep things simple do not
add any code to handle any of the events associated with the
controls on your form.

PROJECT 3.2

Use buttons, group boxes, and radio buttons to create the GUI
pictured in Figure 3.8. The default checked property for each of

F I G U R E 3.7

Getting Started with VB.NET 45

Team-LRN

your On buttons should be set to True. When you run the program
and check the False radio buttons, the True buttons should turn off
automatically because they are grouped together. For right now, to
keep things simple do not add any code to handle any of the events
associated with the controls on your form.

F I G U R E 3.8

46 Introduction to VB.NET

Team-LRN

C H A P T E R 4

Value Types and Operators

Most financial programming involves making mathematical
calculations. As in algebra, we often use variables in computer
programs to hold different values we need for calculation. In this
chapter, you will learn how to declare variables and perform
calculations in VB.NET.

DECLARING VARIABLES

To a computer, primitive or simple value types, called variables, are
actual, physical spaces in memory that store data for use by our
program. Before we can use a variable, we need to declare it using
the Dim statement. That is, we have to tell the computer to set up a
space in memory with a specific name. In programming, the
variable names we use are usually descriptive of the contents they
hold. For example, a program to analyze stock returns might
contain variables like this:

Dim sglMondayClose, sglStockPrice As Single
Dim dblCallDelta As Double
Dim strTicker As String

These lines of code set up variables, physical places in
memory, that will be known by the names sglMondayClose,
sglStockPrice, dblCallDelta, and strTicker. Furthermore, the types
of data that will go into each of these containers will be things
called a single, a double, and a string. Single, double, and string are
value types, which tell us what kind of data the variable can hold.
Here is a list of the different value types supported by VB.NET,
with descriptions:

47

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

V
a
lu
e
T
y
p
e

w
it
h
Id
e
n
ti
fi
e
r

R
a
n
g
e

N
o
te

E
x
a
m
p
le

U
s
in
g
N
a
m
in
g

C
o
n
v
e
n
ti
o
n
a
n
d
V
a
lu
e
T
y
p
e

Id
e
n
ti
fi
e
r

B
o
o
le
a
n

T
ru
e
o
r
fa
ls
e

1
6
b
it
s.

S
to
re
d
in
te
rn
a
lly

a
s

e
it
h
e
r
0
o
r
1

D
im

b
ln
B
u
yS

e
ll
A
s
B
o
o
le
a
n

C
h
a
r

A
n
y
U
n
ic
o
d
e
c
h
a
ra
c
te
r

C
h
a
ra
c
te
r
c
o
d
e
s

0
to

6
5
,5
3
5

D
im

c
h
rE
xp
M
o
n
th

A
s
C
h
a
r

D
a
te

1
/
1
/
0
0
0
1
to

1
2
/
3
1
/
9
9
9
9
a
n
d

0
:0
0
:0
0
to

2
3
:5
9
:5
9

6
4
b
it
s.

H
o
ld
s
d
a
te
s
a
n
d
ti
m
e
s

D
im

d
tE
xp
D
a
te

A
s
D
a
te

D
e
c
im
a
l@

1
.0
E
2

2
8
to

7
.9
E
þ

2
8

1
2
8
b
it
s.

L
a
rg
e
n
u
m
b
e
rs

D
im

d
e
c
C
o
va
r
A
s
D
e
c
im
a
l

o
r

D
im

d
e
c
C
o
va
r@

D
o
u
b
le

#
þ
/
2

5
.0
E
2

3
2
4
to

þ
/
2
1
.7
E

þ
3
0
8

6
4
b
it
s.

D
o
u
b
le
-p
re
c
is
io
n

flo
a
ti
n
g
-p
o
in
t
va
ri
a
b
le

D
im

d
b
lC
a
llD

e
lt
a
A
s
D
o
u
b
le

o
r

D
im

d
b
lC
a
llD

e
lt
a
#

In
te
g
e
r
%

2
2
,1
4
7
,4
8
3
,6
4
8
to

2
,1
4
7
,4
8
3
,6
4
7

3
2
b
it
s.

In
te
g
e
rs

o
n
ly
.
N
o

d
e
c
im
a
l
n
u
m
b
e
rs

D
im

in
tN
u
m
S
h
a
re
s
A
s
In
te
g
e
r

o
r

D
im

in
tN
u
m
S
h
a
re
s%

L
o
n
g
&

2
9
,2
2
3
,3
7
2
,0
3
6
,8
5
4
,7
7
5
,8
0
8

to
9
,2
2
3
,3
7
2
,0
3
6
,8
5
4
,7
7
5
,8
0
7

6
4
b
it
s.

B
ig

in
te
g
e
rs
,
b
u
t
st
ill
n
o

d
e
c
im
a
l
n
u
m
b
e
rs

D
im

ln
g
N
u
m
T
ra
d
e
s
A
s
L
o
n
g

o
r

D
im

ln
g
N
u
m
T
ra
d
e
s&

S
h
o
rt

2
3
2
,7
6
8
to

3
2
,7
6
7

1
6
b
it
s.

S
m
a
ll
in
te
g
e
rs

o
n
ly
.
N
o

d
e
c
im
a
l
n
u
m
b
e
rs

D
im

sh
tN
u
m
C
o
n
tr
a
c
ts

A
s
S
h
o
rt

S
in
g
le

!
þ
/
2

1
.5
E
2
4
5
to

þ
/
2

3
.4
E
þ

3
8

3
2
b
it
s.

S
in
g
le
-p
re
c
is
io
n

flo
a
ti
n
g
-p
o
in
t
va
ri
a
b
le

D
im

sg
lS
to
c
kP

ri
c
e
A
s
S
in
g
le

o
r

D
im

sg
lS
to
c
kP

ri
c
e
!

S
tr
in
g
$

V
a
ri
e
s
b
a
se
d
u
p
o
n
th
e
n
u
m
b
e
r
o
f

c
h
a
ra
c
te
rs

C
h
a
ra
c
te
r
d
a
ta

D
im

st
rT
ic
ke
r
A
s
S
tr
in
g

o
r

D
im

st
rT
ic
ke
r$

48

Team-LRN

When a variable of any type is created, its default value is 0.We
can define or change the values of our variables this way:

sglMondayClose = 10.12
strTicker = "MMZR"

Alternatively, we could declare and define a variable in the same
line:

Dim sglStockPrice As Single = 4.92

In Visual Basic.NETall variables must be declared before they
can be used. Later in the book, we will show you that this helps
avoid common programming errors.

CONSTANTS

If the value of a variable is not going to change over the life of our
program, we should declare it as a constant, rather than a variable,
like this:

Const DIVISOR = 1.8

Declaring a value as a constant protects it against accidentally
being changed down the road.

VARIABLE SCOPE

Variables and constants can also be declared using an access
modifier. Access modifiers serve to specify the scope and
accessibility of the variable. The access modifiers are Friend,
Private, Protected, Protected Friend, and Public. Here is an
example:

Public strExchange As String

In later chapters, we will discuss access and scope in more
detail. For now, be aware that the scope of a variable refers to the
parts of a program that can access a variable. Not all variables are
accessible everywhere. Variables in Visual Basic.NET can have the
following scope:

Value Types and Operators 49

Team-LRN

Scope Accessibility or “Visibility”

Class Accessible in what is known as the declaration space of the
class

Module Accessible to all functions and procedures defined in the
module

Global or Namespace Accessible anywhere in a project
Block Accessible only within the block of code in which they are

declared

Variables should always be defined with the smallest possible
scope. Variables with global scope can make the logic of an
application extremely difficult to understand and make the reuse
and maintenance of your code more difficult. In a Visual Basic.NET
application, global variables should be used only when there is no
other convenient way to share data between parts of your program.
When global variables must be used, it is good practice to declare
them all in a single module, grouped by function. For now, just be
aware that not all variables are accessible from everywhere in our
applications. The access modifiers will limit the visibility of
variables.

REPRESENTING DATES AND TIMES

When making financial calculations, we also often need to
represent dates and times in our programs for things like interest
accrual and trade time stamps.

Dim dtMyDate As Date
dtMyDate = #01/02/03#

Visual Basic.NET is sensitive to the cultural differences in date
representation. For example, if you are working in the United
Kingdom and rerun the above example, the first four numbers are
interpreted as, the first of February rather than the American
second of January.

OPTION STRICT

An Option Strict On statement should always appear in the
declarations section of a module. Option Strict On prevents Visual
Basic.NET frommaking implicit type conversions that may involve

50 Introduction to VB.NET

Team-LRN

loss of data. For purposes of demonstration in this book, however,
we will leave the default Option Strict Off. Just remember, in the
real world you should always have the Option Strict On statement
at the top in your programs.

STRUCTURES

Generally, when a group of data fit together, but consist of different
value types, we may prefer to create our own variable type, called a
structure. Visual Basic.NET allows us to create our own user-
defined value types using the Structure statement. Our structures
will generally contain more than one element, and each element
must be declared with an access modifier. Here is an example of a
user-defined data type called QuoteData:

Structure QuoteData
Public dtDate As Date
Public dblOpen As Double
Public dblHigh As Double
Public dblLow As Double
Public dblClose As Double
Public lngVolume As Long

End Structure

We can then declare a variable of the type QuoteData in the
following way:

Dim qdStockPrice As QuoteData

Much in the same way we reference properties of objects, such
as controls, we can reference the individual elements of a structure
value type like this:

Text1.Text = qdStockPrice.dtDate
Text2.Text = qdStockPrice.dblOpen

ENUMERATIONS

Enumerations are integer value types that have a limited set of
acceptable values. VB.NET allows us to create enumerations using

Value Types and Operators 51

Team-LRN

the Enum statement, the integer value type—byte, short, integer,
long—and the acceptable values.

Enum TradeStatus As Short
Filled
Open
Partial
Canceled
Rejected

End Enum

We can use this enumeration by calling on one of its member
names in code as follows:

Dim myTrade As TradeStatus = myTrade.Partial

Enumerations make it easier to understand the purpose of
variables with a limited number of allowable values as opposed to
the integer values.

OPERATORS

Visual Basic.NET has a wealth of operators to handle mathematical
calculations and other logical operations. As we go through the
book, we will be making extensive use of operators as we write
programs. Most of them are self-explanatory, but some may not be.
You can use this section as a reference as they come up over the
course of the book.

Arithmetic Operators

Math

Operator Name Example Description

^ Exponentiation x^y Raises x to the power of y
- Negation -y Negates y
� Multiplication x�y Multiplies x and y
/ Division x/y Divides x by y and returns a floating-

point result
\ Integer division x\y Divides x by y and returns an integer

result
Mod Modulos x Mod y Divides x by y and returns the

remainder
þ Addition x þ y Adds x and y
2 Subtraction x 2 y Subtracts y from x

52 Introduction to VB.NET

Team-LRN

Comparison Operators

Comparison

Operator Description Example

¼ Equal sglStockPrice ¼ 5.67
,. Not equal intNumShares ,. 500
. Greater than dblCallDelta . .5
, Less than intVolume , 10000
.¼ Greater than or equal sglClosePrice .¼ 52.50
,¼ Less than or equal sglHighPrice ,¼ sglPreviousClose

Assignment Operators

Assignment

Operator Example Explanation New Value

Assume that sglPrice5 10.00 and strTicker5 “PKR”

þ¼ sglPrice þ¼3 sglPrice ¼ sglPrice þ3 sglPrice ¼ 13.00
-¼ sglPrice 2¼2.00 sglPrice ¼ sglPrice 22.00 sglPrice ¼ 8.00
�¼ sglPrice �¼1.15 sglPrice ¼ sglPrice � 1.15 sglPrice ¼ 11.5
/¼ sglPrice /¼2 sglPrice ¼ sglPrice / 2 sglPrice ¼ 5
\¼ sglPrice \¼3 sglPrice ¼ sglPrice \ 3 sglPrice ¼ 3
^¼ sglPrice ^¼ .2 sglPrice ¼ sglPrice ^ .2 sglPrice ¼ 1.5849
&¼ strTicker &¼“Q” strTicker ¼ strTicker & “Q” strTicker ¼ “PKRQ”

Logical Operators

Logical

Operator Description Example

And Evaluates to True only if both
conditions are true

dblPrice . 55 And dblPrice
, 56

AndAlso Evaluates to True only if both
conditions are true

dblPrice . 55 AndAlso
dblPrice , 56

Not Reverses or negates the meaning of
an operand

Or Evaluates to True if one or both
conditions are true

dblPrice. 55 Or dblPrice,
40

OrElse Evaluates to True if one or both
conditions are true

dblPrice . 55 OrElse
dblPrice , 40

Xor If both are true or false, evaluates to
False

dblPrice . 55 Xor dblPrice
, 60

Value Types and Operators 53

Team-LRN

Concatenation Operators

Concatenation

Operator Description Example

& Concatenates or binds a number of
strings together. (Preferred)

strTick ¼
strSymbol & “Q”

þ Concatenates or binds a number of
strings together

strTick ¼
strSymbol þ “Q”

STOCK INDEX FUTURES

The most widely traded equity index futures contract in the United
States is the S&P 500. The futures contracts on the S&P 500 index
are traded at the ChicagoMercantile Exchange (CME). The value of
the contract is $250 times the futures price. The CME’s “e-Mini”
contract is a smaller, electronically traded version of the original
pit-traded contract and has a value of $50 times the futures price. So
if the futures contract were valued at 1000, it would have a notional
value of $250,000 and the e-Mini a notional value of $50,000. The
CME also trades options on these futures contracts. The Chicago
Board Options Exchange trades options on the cash S&P 500 index.
The S&P 500 index consists of 500 stocks, each selected for its
market size, liquidity, and industry group. Also, the S&P 500 is a
market value–weighted index where the market value of an
individual stock is the stock price times the number of shares
outstanding. Each stock’s weight in the index then is proportionate
to its market value. The weights for the individual stocks change as
their respective prices rise and fall relative to other stocks in the
index (Kolb, 1997, p. 334). Alternatively, an index could be price-
weighted, where the index weights are proportional to the stock
prices. The Dow Jones Industrial Average is an example of a price-
weighted index.

Here is an example of a formula for the calculation of the cash
value of a market value–weighted index:

S&P 500 ¼

P500
i¼1 NiPi

O:V:

 !
� 10

54 Introduction to VB.NET

Team-LRN

where:

O.V. ¼ original valuation
Ni ¼ number of shares outstanding for the ith firm
Pi ¼ price per share of the ith firm

Let’s build a simple program that will calculate the price of a
market value–weighted stock index. In this example, we will
demonstrate the simplest type of computer program, one that uses
procedural programming techniques. Procedural programs are
those written as lists of instructions divided into sections or units of
code called the main block, plus subroutines and functions, which
we will look at in Chapter 6. Procedural programming works well
for small projects because it is very intuitive. Moreover, machine
code is procedural, and so compiling procedural code is very
efficient.

Step 1 Open the Visual Basic.Net IDE. For this exercise we
are going to create a new console application, so click
on the icon named Console Application and name the
project “IndexFutures.” A console application is the
simplest type of VB.NET program and contains only
text input and output, as you will see. The interface
will be a command, or console, window.

Step 2 When the project IDE opens up, you will be
presented only with a window in which to write
code. Within the Sub main() procedure, we need to
create the necessary variables and algorithms to
make our calculations.

For simplicity, we will assume that there are two stocks in this
index, known as stock A and stock B, and that it is a market value–
weighted index like the S&P 500. Also, to keep things simple, we
will not add Option Strict to our code.

Step 3 Now, let’s add some code to calculate the index value.
To do this, we will need to declare and define some
variables and use some mathematical operators
according to the formula.

Value Types and Operators 55

Team-LRN

Module Module1

Sub Main()

Const ORIGINALVALUE = 2000 ’ Index original value

Dim dblIndexValue As Double

Dim intSharesA% = 1000 ’ 1000 shares of A outstanding

Dim intSharesB% = 2000 ’ 2000 shares of B outstanding

Console.WriteLine("Please enter the price of stock A:")

Dim dblPriceA# = Console.ReadLine

Console.WriteLine("Please enter the price of stock B:")

Dim dblPriceB# = Console.ReadLine

’ Calculate the value of the index and print it to the screen.

dblIndexValue = (((dblPriceA * intSharesA) + (dblPriceB * _

intSharesB)) / ORIGINALVALUE) * 10

Console.WriteLine(‘The value of the index is’ & dblIndexValue)

End Sub

End Module

You will notice in the code above, we have included some
sample values for the Original Value and the number of shares
outstanding. We will allow the user to enter the prices of stocks A
and B when the Console.ReadLine statements are executed. Notice
that we have used the double value type for our variables using
both the type name and the identifier for illustration purposes.
Also, we have declared the original value of the index as a constant.

Step 4 Once your code is finished, run the program by
selecting from the menu bar Debug . Start Without
Debugging. This will cause the program to pause
before it closes the console window so we can
examine the results of our program (see Figure 4.1).

Let’s augment this program to calculate the fair value of a
futures contract on this index. We can calculate the fair value using
the cost-of-carry model (Kolb, 1997, p. 340):

F0,t ¼ S0

�
1þ R

T

360

�
�
Xn
i¼1

Di

�
1þ R

ti

360

�

where:

F0,t ¼ index futures price at time 0 and expires t days
in the future

S0 ¼ value of the market value–weighted cash
index at time 0

R ¼ interest rate
T ¼ number of days till futures expiration

56 Introduction to VB.NET

Team-LRN

Di ¼ amount of the ith dividend
ti ¼ number of days the ith dividend will be

invested from receipt until futures expiration

Step 5 Change the code so as to calculate the fair value of a
futures contract.

Module Module1

Sub Main()

Const ORIGINALVALUE = 2000 ’ Index original value

Dim dblFairValue, dblIndexValue As Double

Dim dblDaysTillExp As Double = 90 ’ 90 days till expiration

Dim dblRate As Double = 0.10 ’ 10% interest rate

Dim intSharesA% = 1000 ’ 1000 shares of A outstanding

Dim intSharesB% = 2000 ’ 2000 shares of B outstanding

Dim dblDivA# = 2.00 ’ 2.00 dividend 40 days from now on A

Dim dblDivB# = 1.00 ’ 1.00 dividend 50 days from now on B

Dim intDaysDivAInvested% = 50

’ (90 - 40) = 50 days to invest dividend

Dim intDaysDivBInvested% = 40

’ (90 - 50) = 40 days to invest dividend

Console.WriteLine("Please enter the price of stock A:")

Dim dblPriceA# = Console.ReadLine

Console.WriteLine("Please enter the price of stock B:")

Dim dblPriceB# = Console.ReadLine

’ Calculate the fair value and print it to the screen.

dblIndexValue = (((dblPriceA * intSharesA) + (dblPriceB * _

intSharesB)) / ORIGINALVALUE) * 10

dblFairValue = (dblIndexValue) * (1 + dblRate * dblDaysTillExp _

/ 360) - (dblDivA * (1 + dblRate * _

F I G U R E 4.1

Value Types and Operators 57

Team-LRN

intDaysDivAInvested / 360) + dblDivB * (1 + _

dblRate * intDaysDivBInvested / 360))

Console.WriteLine("The fair value is" & dblFairValue)

End Sub

Step 6 Run the program by selecting from the menu bar
Debug . Start Without Debugging (see Figure 4.2).

Although we are finished programming for the chapter, let’s
take a little more in-depth look at the fair value of a futures contract
on a stock index.

No-arbitrage conditions prevent the value of the index futures
contract from moving too far away from the fair value. Cash-and-
carry strategies prevent the futures price from getting too high
relative to the cash stocks, and reverse cash-and-carry arbitrage
strategies prevent it from getting too low. Identifying opportunities
for cash-and-carry arbitrage, however, necessitates the technologi-
cal infrastructure to monitor the 500 stocks in real time and execute
trades simultaneously. These types of trading strategies are often
referred to as “program trading” since they are computer-
generated.

In the following two examples illustrating index arbitrage, we
assume that the prices of the underlying stocks A and B do not
change over the 90 days, although the profit or loss does not in
either case depend on the stock prices at expiration. Rather, the

F I G U R E 4.2

58 Introduction to VB.NET

Team-LRN

profit arises from a discrepancy between the futures price and its
fair value on day 0 (Kolb, 1997, p. 342).

The futures price must be equal to the cash index price plus
the charges to carry the cash index forward to expiration (Kolb,
1997, p. 71). The carrying charge is the interest lost by being long
the underlying stocks. If the prices do not fall in line with the cost of
carry, a trader may attempt a cash-and-carry or reverse cash-and-
carry arbitrage.

Cash-and-Carry Arbitrage

A cash-and-carry arbitrage strategy involves buying the stock and
selling the futures contract in a similar but opposite fashion (Kolb,
1997, p. 343). Here we replicate the index by weighting our
portfolio with three parts stock B, $750, and two parts stock A, $500,

Time Cash Market Futures Market

0 days Borrow $1250 for 90 days at 10%
Interest owed will be $ 31.25
Buy 5 shares of stock A at $100
Buy 10 shares of stock B at $75

Sell 1 futures contract at
1285.00

40 days Receive $2.00 dividend on each share of
stock A, totaling $10

Invest proceeds for 50 days at 10%
50 days Receive $1.00 dividend on each share of

stock B, totaling $10
Invest proceeds for 40 days at 10%

90 days Sell 5 shares of stock A at $100
Sell 10 shares of stock B at $75
Receive total proceeds from invested

dividends of $10.14 and $10.11
Total proceeds are $1270.25
Repay debt plus interest of $1281.25

Buy 1 futures contract at
fair value at expiration of
1250, which is the spot
index value

P&L Loss: $11.00 Profit: $35.00
Total profit of $35.00 2 $11.00 ¼ $24.00

Reverse Cash-and-Carry Arbitrage

A reverse cash-and-carry arbitrage opportunity involves selling the
underlying stock and buying the futures contract in a similar but
opposite fashion (Kolb, 1997, p. 343).

Value Types and Operators 59

Team-LRN

Time Cash Market Futures Market

0 days Sell 5 shares of stock A at $100
Sell 10 shares of stock B at $75
Invest proceeds of $1250 for 90 days at

10%
Interest earned will be $31.25

Buy 1 futures contract at
1255.00

40 days Borrow $10.00 for 50 days at 10%
Pay dividend on stock A

Interest owed will be $0.14
50 days Borrow $10.00 for 40 days at 10%

Pay dividend on stock B
Interest owed will be $0.11

90 days Buy back 5 shares of stock A at $100
Buy back 10 shares of stock B at $75
Repay debt plus interest of $20.25
Receive interest of $31.25

Sell 1 futures contract at fair
value at expiration of 1250,
which is the spot index
value

P&L Profit: $11.00 Loss: $5.00.
Total Profit of $11.00 2 $5.00 5 $6.00

SUMMARY

In this chapter you have been exposed to all the different variable
types available in Visual Basic.NET. Also, you should now
understand how to declare variables using the Dim statement
and the various identifiers and access modifiers as well as how
to define them. Good programmers will also understand the
importance of the Option Strict On, though for simplicity’s sake
we will neglect it in this book. Also, our variable naming con-
vention requires that we add prefixes to our variable names that
indicate the data type of the variable. Variable names should
also describe something about the nature of the value, such as
dblStockPrice.

Further, we investigated the different operators available to
programmers in VB.NETand looked at how some of them could be
used in the financial markets. Our example consisted of calculating
the cash value of a stock index and the fair value of a futures
contract on that index.

60 Introduction to VB.NET

Team-LRN

PROBLEMS

1. What is a variable, and what is a constant?
2. When should you use Option Strict?
3. Write a line of code that would declare a variable to hold

the value of the gamma of an option.
4. Write a line of code that would calculate the average of five

daily returns known as dblMonReturn, dblTuesReturn,
dblWedReturn, dblThursReturn, and dblFriReturn.

5. What is a concatenation operator? What is the value of a
string variable known as strOptionSymbol if
strOptionSymbol ¼ “INTC” & “ ” & “Sep” & “ ” & “50”?

Value Types and Operators 61

Team-LRN

PROJECT 4.1

Create a VB.NETconsole application that accepts five daily closing
stock prices from the user and calculates the mean and standard
deviation of the stock’s log returns (see Figure 4.3). The formula for
the log return is

ri ¼ ln
Si

Si�1

� �

Of course, the equations for mean and standard deviation are

mr;t,T ¼
1

n

Xn
i¼1

ri and sr;t,T ¼

ffi
1

n� 1

Xn
i¼1

(ri � �rr)2

s

Since we won’t cover functions until later in the book, here’s a hint.
We can calculate the natural log using VB.NET’s built-in log
function.

dblTuesReturn = Math.log(dblTuesPrice / dblMonPrice)

Also, the square root can be found by raising the value to the 0.5
power using the ^ operator.

Be sure to name your variables using the naming conventions.

F I G U R E 4.3

62 Introduction to VB.NET

Team-LRN

PROJECT 4.2

To calculate the value of the Dow Jones Industrial Average, a price-
weighted index, the equation is

DJIA ¼

P30
i¼1 Pi

divisor

Futures contracts on the DJIA trade at the Chicago Board of Trade.
Create a console application that calculates the fair value of a

two-stock, price-weighted index according to this formula. Assume
that the two stocks, A and B, are priced at 100 and 75, respectively,
and pay dividends in the amounts and times shown in the chapter
(Kolb, 1997, p. 330).

Value Types and Operators 63

Team-LRN

This page intentionally left blank.

Team-LRN

C H A P T E R 5

Control Structures

The code we wrote in Chapter 4 was all linear, or sequential, in
nature. That is, lines of code were executed in order, one after the
other, till the end of the program. Although this is fine for very
short tasks, to tackle more complex situations, we will need to
employ control structures, which involve the use of program flow
statements. Program flow statements fall into one of two categories:

^ Selection structures. Conditional, or decision statements, in
which code is executed based on whether or not a condition
is met

^ Repetition structures. Looping statements, in which code is
executed repeatedly either a number of times or until a
condition is met

SELECTION STRUCTURES

If . . . Then . . . Else Statement

The If . . . Then . . . Else statement lets us say, in effect, “If this is true,
then do this; otherwise, do that.” The logic couldn’t be more
intuitive. The following example illustrates the use of the
If . . . Then . . . Else structure.

If dblStockPrice > 55 OrElse dblStockPrice < 40 Then
Console.WriteLine("SELL!!!")

Else
Console.WriteLine("HOLD")

End If

65

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

In the example, the statements following the If are executed only if
the expression evaluates to True, that is if the stock price is greater
than 55 or less than 40. The Else block of code executes if the
expression evaluates to False. So in this case, if the stock price is
between 40 and 55, we will hold. The expression used in If . . . Then
is a Boolean expression, true or false. The use of the Else block in an
If statement is optional.

The Select Case Statement

The Select Case structure is very similar to the If . . . Then . . . Else
structure, but it is much more efficient and makes our code much
more readable if there are several branches to the decision
structure. In the Select Case structure we can include an unlimited
number of clauses. Let’s look at an example that not only illustrates
the logic statements within a Select Case framework, but also
demonstrates how to build a histogram of log returns:

Dim intBin1, intBin2, intBin3, intBin4, intBin5, intBin6 As Integer

Dim dblDailyReturn As Double = Math.Log(51 / 50)

Select Case dblDailyReturns

Case Is < -.02

intBin1 += 1

Case -.02 To -.01

intBin2 += 1

Case -.01 To 0

intBin3 += 1

Case 0 To.01

intBin4 += 1

Case .01 To.02

intBin5 += 1

Case Is > .02

intBin6 += 1

Case Else

MsgBox "Error."

End Select

Since the natural log of (51 / 50) is 0.0198, the value of intBin5
will be incremented by 1. The Case Else clause at the end of the
structure is optional. Also, multiple conditions are evaluated
separately with a logical OR as opposed to an AND, so it’s best to

66 Introduction to VB.NET

Team-LRN

keep Select Case logic as simple as possible. Let’s look at another
example evaluating strings.

Call and put option symbols include a strike price and
expiration month. The second-to-last letter in the symbol denotes
the month of expiration, and the last term denotes the price. So, for
example, GEKD would be the symbol for the General Electric
November 20.00 calls. GERTwould be the June 17.50 puts. We will
have more examples using option symbols later in the book, but
here is a Select Case structure using the char data type to determine
the month of expiration:

Dim chrMonth As Char = "D"
Dim strMonth As String
Select Case chrMonth

Case "A", "a", "M", "m"
strMonth = "January"

Case "B", "b", "N", "n"
strMonth = "February"

Case "C", "c", "O", "o"
strMonth = "March"

Case "D", "d", "P", "p"
strMonth = "April"

Case "E", "e", "Q", "q"
strMonth = "May"

Case "F", "f", "R", "r"
strMonth = "June"

Case "G", "g", "S", "s"
strMonth = "July"

Case "H", "h", "T", "t"
strMonth = "August"

Case "I", "i", "U", "u"
strMonth = "September"

Case "J", "j", "V", "v"
strMonth = "October"

Case "K", "k", "W", "w"
strMonth = "November"

Case "L", "l", "X", "x"
strMonth = "December"

End Select

Since the value of chrMonth is “D,” the value of strMonth will be
set to “April.”

Control Structures 67

Team-LRN

REPETITION STRUCTURES

Visual Basic.NET provides a number of different types of loops that
you can use to implement repetitive operations.

The For . . . Next Loop

The For . . .Next loop executes a series of statements a specific
number of times. The basic syntax is:

For x = 0 to 10 Step 2

Console.Writeline("Your stock is down" & x & "points.")

Next x

Here, the program will loop through this code five times,
starting with x¼0. Each time it loops, x will be incremented by 2
until the maximum value of x, in this case 10, is reached. In the
example above, the printout will show our stock fall by 2 points
with each successive loop.

If the Step phrase is left out, your program will automatically
increment the loop counter variable by þ1. Let’s take a look at this
code:

For x = 1 to 5
intSum += x

Next x

After completing the loop, the value of intSum ¼ 1 þ

2 þ 3 þ 4 þ 5 ¼ 15.

The For Each . . . Next Loop

The For Each . . .Next loop is a special type of loop designed to be
used with data structures, such as an array. We will not discuss
arrays until later in the book, so for right now, just note the
structure of this type of loop. Here is an example:

Sub Main()

Dim dblReturn, dblLowReturn As Double

Dim dblIBM As Double() = New Double() f.01,.005, -.05, 0,.02g

For Each dblReturn In dblIBM

If dblReturn < dblLowReturn Then

dblLowReturn = dblReturn

68 Introduction to VB.NET

Team-LRN

End If

Next dblReturn

Console.WriteLine("The lowest return is" & dblLowReturn)

End Sub

The For Each . . .Next loop cycles through each element in an
array, or collection, without requiring specification of each
element’s index. Each time through the loop, the variable element,
in this case dblReturn, is assigned the contents of the next item in
the array.

For two-dimensional arrays, the For Each . . .Next structure
will iterate through all the elements by row. That is, it will
increment the second index until it reaches the upper bound, then
increment the first index, and then restart iterating through the
second again.

As we will see later, For Each . . .Next loops are also very
useful for looping through collections of objects.

The Do . . .While Loop

Here is an example of a Do . . .While loop:

Sub Main()

Dim dblStockPrice# = 35

Do While dblStockPrice < 100

dblStockPrice += 1

Loop

Console.WriteLine("The stock price is" & dblStockPrice)

End Sub

When this loop is finished, it prints out the price as 100. This
routine evaluates dblStockPrice , 100 each time through the loop.
When dblStockPrice ¼ 99, the loop increments dblStockPrice to
100. The next evaluation of dblStockPrice ¼ 100 is False, and so
program execution exits the loop and continues with the line after
the Loop statement, printing dblStockPrice as 100.

The Do . . . Until Loop

Here is an example of a Do . . . Until loop:

Sub Main()

Dim dblSellPrice# = 95

Dim dblStockPrice# = 45

Do Until dblStockPrice >= dblSellPrice

Control Structures 69

Team-LRN

dblStockPrice *= Math.Exp(0.1)

Console.WriteLine("We are still holding the stock.")

Loop

Console.WriteLine("We have sold the stock at" & dblStockPrice)

End Sub

As with the Do . . . While loop, the Do . . . Until is not necessarily
executed at all since the program evaluates the exit condition before
entering the loop. In this example, we sold the stock at 100.149.

The Do . . . Loop While Loop

To make sure that a loop executes at least once, place the exit
condition at the Loop statement, rather than at the Do statement, as
in the following:

Sub Main()

Dim dblStockPrice# = 35

Do

Console.WriteLine("Incrementing the stock price.")

dblStockPrice -= 1

Loop While dblStockPrice > 30

Console.WriteLine("Sold the stock at" & dblStockPrice)

End Sub

In this program the stock is sold at 30.

The Do . . . Loop Until Loop

You can similarly put the Until condition at the end of a loop. In the
previous example you knew you wanted to go through the loop at
least once. By putting the Until statement at the end, you don’t need
to worry about the initial value of the variable.

Sub Main()

Dim dblStockPrice# = 35

Do

dblStockPrice -= 1

Loop Until dblStockPrice = 25

Console.WriteLine("We sold the stock at" & dblStockPrice)

End Sub

In this program, the stock is sold at 25.

70 Introduction to VB.NET

Team-LRN

The While . . . End While Loop

Visual Basic.NET also provides another general-purpose Loop
statement called the While . . . End While loop. The While . . . End
While loop has the following syntax:

Sub Main()

Dim dblStockPrice# = 35

While dblStockPrice <= 50

dblStockPrice += 1

Console.WriteLine("Holding the stock.")

End While

Console.WriteLine("We sold the stock at" & dblStockPrice)

End Sub

In this program the stock is sold at 51.

THE EXIT COMMANDS

There are occasions where you need to break out of a loop. In such a
case we can insert an Exit command. Depending on which type of
loop structure you are using, you will use the Exit For command or
the Exit Do command. We might generally do this inside an
If . . . Then statement inside a loop. Here is an example of an infinite
loop. The DoWhile 1 statement will never evaluate to False, and so
this program will loop forever until some event causes an exit from
the loop. As you can imagine, it’s best to be very careful with
infinite loops.

Sub Main()

Dim dblStockPrice# = 35

Do While 1

dblStockPrice += 1

If dblStockPrice > 100 Then

Exit Do

End If

Loop

Console.WriteLine("We sold the stock at" & dblStockPrice)

End Sub

In this program, we sold the stock at 101.

NESTED LOOPS

You can put a For . . . Next loop inside another For . . .Next loop.
Consider the following example showing nested For . . .Next loops

Control Structures 71

Team-LRN

to transpose a matrix. Again, we haven’t looked at arrays yet, so
don’t worry about the variable references. For now, just note the
structure of embedded loops.

For x = 0 To intRows
For y = 0 To intCols

outArray(y, x) = inArray(x, y)
Next y

Next x

Although For . . . Next loops are useful when we know in advance
how many times we want to execute the loop, there are occasions
when we do not have this information in advance.

ESTIMATING AND FORECASTING VOLATILITY

When analyzing financial data, we often estimate volatility over a
period of time in the past. This is easily done if we have a time
series of price data, as was the case in Project 4.1 where we used
four log returns to calculate the standard deviation of returns. If we
have several years of historical data, we can estimate the daily
volatility by simply calculating the standard deviation of daily log
returns.

How though do we estimate volatility given only 1 day of
data? Usually, we would use the same method. We estimate 1 day
standard deviation using close-to-close data as follows:

sCC ¼

ffi
ln

Ci

Ci�1

� �� �2s

However, this method certainly does not capture all the
information of intraday volatility. A stock could close at 50 one day,
gap open to 53 the following day, trade down to 44, and close back
at 50. In this case, using this close-to-close calculation would not be
a very good indicator of volatility since “0” is not a good
description of what happened.

To better account for one-period volatility, several other, more
efficient methods have been proposed that use intraperiod highs
and lows to estimate volatility. These methods are often grouped
under the term extreme value estimators. Since several models that we

72 Introduction to VB.NET

Team-LRN

use in financial markets are based on the assumption of continuous
time, it is more intuitive to examine the entire time period rather
than simply the ends. The most well known of the extreme value
estimators have been proposed by Parkinson (1980) and Garman
and Klass (1980) (cited in Nelken, 1997, Chap. 1). The Parkinson’s
equation uses the intraperiod high and low thusly:

sP ¼ 0:601

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

Hi

Li

� �2
s

The Garman-Klass estimator, which uses the intraperiod high and
low as well as the open and close data, has the form

sGK ¼

ffi
1

2
ln

Hi

Li

� �2

� ½2 ln (2)� 1� ln
Ci

Oi

� �2
" #vuut

Notice that these equations represent an estimate of the one-period
historical volatility of the underlying symbol. You may notice,
however, that neither of these models takes into account gaps,
either up or down, from the previous day’s close. Volatility that
happens overnight will not be accounted for in either of these
models. For this and other reasons there are dozens of derivatives
of these two extreme value estimators currently in use. We will not
examine any of them beyond the two standard models presented.

These Parkinson and Garman-Klass models estimate past
volatility. They do not forecast future volatility. Forecasting
volatility is its own subject and is the topic of literally hundreds
of research papers and books. The most popular models for
forecasting volatility are the GARCH (generalized autoregressive
conditional heteroscedasticity) family.

Dozens of variations of GARCH models have been proposed
for forecasting volatility based on the assumption that returns are
generated by a random process with time-varying and mean-
reverting volatility (Alexander, 2001, p. 65). That is, in financial
markets, periods of low volatility tend to be followed by periods of
low volatility, but are interspersed with periods of high volatility.
The most commonly referenced GARCH model for forecasting

Control Structures 73

Team-LRN

variance is GARCH(1,1):

ŝs 2
tþ1 ¼ (1� a� b) � V þ ar2t þ bŝs 2

t (5:1)

and

ŝs 2
tþj ¼ V þ (aþ b) j�1

� (ŝs 2
tþ1 � V) (5:2)

where a and b are optimized coefficients, r is the log return, and V
is the sample variance over the entire data set. Determining the
values of these coefficients, a and b, is in itself an art and a science
called optimization. In a later chapter we will discuss how to
employ an optimization engine to calculate the values of these
coefficients using maximum-likelihood methods. For now, let’s get
familiar with forecasting variance, and therefore the volatility, of an
underlying stock for use in option pricing.

Since the variance forecasts are additive, we can estimate the
volatility between now, time t, and expiration h days in the future in
the following way:

ŝs 2
t,tþh ¼

Xh
j¼1

ŝs 2
tþj (5:3)

So if 10 days remain to expiration, we first calculate the forecast of
variance for tþ1, or tomorrow, using Equation (5.1). Then we can
calculate the individual forecasts for the remaining 9 days using
Equation (5.2). Summing them up, we get a forecast of variance
from today until expiration 10 days from now. From there, we can
easily calculate an annualized volatility, which may or may not
differ from a market-implied volatility in an option.

Let’s create a Windows application that uses a For . . . Next
loop to forecast volatility for a user-defined number of days ahead.

Step 1 Open VB.NET and select New Project. In the New
Project window, select Windows Application, and
give your project the name GARCH and a location of
C:\ModelingFM.

Step 2 Now that the GUI designer is on your screen, from
the Toolbox add to your form a button, named
Button1, a text box, named TextBox1, and a label,

74 Introduction to VB.NET

Team-LRN

named Label1. In the Properties window for Button1,
change the text property to “Calculate.” You should
also clear the text property for the TextBox1 and
Label1.

Step 3 In the Solution Explorer window, click on the View
Code icon to view the Form1 code window.

In this project, we will demonstrate the use of a user-defined
value type, called QuoteData, as well as other data types. You may
remember the discussion of a QuoteData type in the previous
chapter. In any case, we need a construct to hold price data, and the
QuoteData type works nicely. Before we can use the QuoteData
type, we need to define it for the compiler. Then we can declare
some variables, known as qdMonday and qdTuesday, as
QuoteDatas.

Step 4 In the code window, change the code to the following:

Public Class Form1
Inherits System.Windows.Forms.Form

Windows Form Designer generated code
Structure QuoteData

Public dblOpen As Double
Public dblHigh As Double
Public dblLow As Double
Public dblClose As Double

End Structure
Dim qdMonday As QuoteData
Dim qdTuesday As QuoteData

End Class

Step 5 In the Class Name combo box at the top left of your
code window, select Form1. In the Method Name combo box
at the top right of your code window, select Form1_Load. A
code stub for the Form1_Load event handler will appear.
Within this subroutine add the following code to define the
contents of qdMonday and qdTuesday:

Private Sub Form1_Load(ByVal sender . . .) Handles MyBase.Load

qdMonday.dblOpen = 50

qdMonday.dblHigh = 51.25

qdMonday.dblLow = 49.75

qdMonday.dblClose = 50.5

Control Structures 75

Team-LRN

qdTuesday.dblOpen = 50.5

qdTuesday.dblHigh = 51.0

qdTuesday.dblLow = 48.5

qdTuesday.dblClose = 49.5

End Sub

We have now defined two daily bars for a stock. From here we
can add code to forecast volatility.

Step 6 In the same way as in Step 5, select the Button1_Click
event. Within this subroutine add the following code
to declare and define some variables and calculate
the volatility forecast according to the GARCH(1,1)
formula:

Private Sub Button1_Click(ByVal sender . . .) Handles Button1.Click

Dim dblSampleVariance# = 0.0002441 ’ V is the equation

Dim dblAlpha# = 0.0607 ’ Optimized coefficient

Dim dblBeta# = 0.899 ’ Optimized coefficient

Dim dblPrevForecast# = 0.0004152

Dim dblTotalForecast, x As Double

Dim dblOneDayAheadForecast# = (1 - dblAlpha - dblBeta) * _

dblSampleVariance + dblAlpha * Math.Log(qdTuesday.dblClose _

/ qdMonday.dblClose) ^ 2 + dblBeta � dblPrevForecast

For x = 1 To TextBox1.Text

dblTotalForecast += (dblSampleVariance + (dblAlpha + _

dblBeta) ^ (x - 1) * (dblOneDayAheadForecast - _

dblSampleVariance))

Next x

’ Calculate the annualized volatility forecast.

Label1.Text = dblTotalForecast ^ 0.5 * (256/10) ^ 0.5

End Sub

The GARCH(1,1) equation forecasts variance. The square root
of this 10-day variance forecast will give us a 10-day volatility
forecast. Multiplying this by the square root of 256 trading days
divided by 10 gives us an annualized volatility number.

Step 7 Run the program. The result will appear as shown in
Figure 5.1.

76 Introduction to VB.NET

Team-LRN

SUMMARY

In this chapter we learned how to use If . . . Then . . . Else statements,
Select Case statements, and many different kinds of loops to con-
trol program flow. Loops will become more important in future
chapters about arrays and data structures. We also looked at how to
use a loop to forecast volatility using the GARCH(1,1) equation.

F I G U R E 5.1

Control Structures 77

Team-LRN

PROBLEMS

1. What are the two types of structures discussed in this
chapter?

2. Assume you bought stock in MMZR at 50. Write an
If . . . Then . . . Else structure to sell the stock if it goes up by
10 percent or down by 5 percent.

3. What is the difference between the following two loops:

Do While x < 10
x += 1

Loop

and

Do
x += 1

Loop While x < 10

4. What are the different repetition structures available in
VB.NET?

5. Take a look at the following piece of code:

For x = 0 To 2
For y = 0 To 3

Console.WriteLine(x * y)
Next y

Next x

6. What would be printed out to the screen?

78 Introduction to VB.NET

Team-LRN

PROJECT 5.1

The GARCH(1,1) equation forecasts volatility using two optimized
coefficients, alpha and beta, and three values—an estimate of the
previous day’s variance, r 2; the long-run variance, V; and the
previous day’s forecast, s 2

t . The estimate of the previous day’s
variance uses the log of the close-to-close method discussed in the
chapter. However, as we saw, close-to-close may not be a good
representation of intraperiod volatility.

Create a VB.NET Windows application that calculates three
forecasts for volatility for a user-defined number of days ahead.
This time make the GARCH(1,1) forecast using the close-to-close,
the Parkinson, and the Garman-Klass estimators of one-period
volatility. Print out the three forecasts in three labels.

PROJECT 5.2: MONTE CARLO SIMULATION

Visual Basic.NET has a built-in random number generator, rnd(),
which draws uniformly distributed deviates (random numbers)
between 0 and 1. In finance, we often wish to use a normal
distribution for Monte Carlo simulation. Here is the code to
generate a random number drawn from the standard normal
distribution using the rnd() function:

Dim dblNormRand As Double

Randomize()

dblNormRand = rnd() + rnd() + rnd() + rnd() + rnd() + rnd() +

rnd() + rnd() + rnd() + rnd() + rnd() + rnd() - 6

Create a VB.NET Windows application that will use a
For . . . Next loop and a Select Case structure to generate a user-
defined number of normally distributed random deviates and put
the deviates into 10 bins as shown in the Select Case explanation in
the chapter. Your result should look similar to Figure 5.2.

To initialize the VB’s random number generator, place
Randomize() in the Form1_Load event before calling rnd().

Control Structures 79

Team-LRN

F I G U R E 5.2

80 Introduction to VB.NET

Team-LRN

C H A P T E R 6

Procedures

A procedure is a generic term that refers to the two types of
routines—subroutines and functions. Procedures are packaged
pieces of code that perform specific operations. Visual Basic.NET
has hundreds of procedures that we can use in our programs to
perform common tasks such as string manipulation, error
checking, and even a few mathematical and financial calculations.
What’s more, we can create our own, user-defined procedures to
accomplish specific tasks in our programs.

When we call a procedure in our program, we are telling
Visual Basic.NET to execute the code associated with that
procedure. Furthermore, we may specify input arguments, or
parameters, that we want to pass into the procedure—that is, the
value or values we want the routine to work on. When we define a
procedure, we must specify four things: a name for the procedure; a
comma-separated list of parameters the procedure accepts, if any;
the data type of the return value, if any; and the procedure
definition, which is the code that executes when the routine is
called.

The only difference between a subroutine and a function is
that a function returns a value, aptly named the return value or
return argument, whereas a subroutine does not. A return value gets
sent back from the function to the code that called it. In general,
functions are preferred to subroutines, and they will be used
whenever possible. The distinction between functions and
subroutines will become clear when we use them later.

We programmers use procedures to better organize code by
breaking it up into smaller tasks. This makes the program code

81

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

easier to read and debug. Also, procedures that perform common
tasks can be called over and over from different sections of the
program, reducing duplication of code and making the program
easier to maintain. For example, if we wanted to calculate the mean
returns for 100 stocks, we could write one function called Average()
and use it a hundred times over, rather than making the calculation
in code for each of the 100 stocks. Let’s look at the code for an
Average() function:

Public Function Average(ByVal dblReturn1 As Double, _

ByVal dblReturn2 As Double) As Double

Return (dblReturn1 + dblReturn2)/2

End Function

Now let’s review the four elements of a function. One, the
name of this function is Average(). Two, this function accepts two
input arguments, both of type Double, that will have the names
dblReturn1 and dblReturn2 within the function definition. Three,
this function returns a value of type Double. And, four, the function
definition is the code between the function header, the Public
Function Average line, and the function footer, End Function. We
could call this function from somewhere else in our program this
way:

Sub Main()
Dim dblAverageReturn# = Average(.015,.005)
Console.WriteLine(dblAverageReturn)

End Sub

Here the value of dblAverageReturn is set equal to the return value
of the function Average(). Of course, this program prints out .01.

One way to describe a function is to think about a black box
that processes input, much like a mathematical function. In algebra
we may use an expression like this:

y ¼ f (x1, x2, x3)

f(x) is, of course, a function. This function has a name, f. The
function accepts input arguments, namely x1, x2, and x3.
The function named f has a return value to which y is then set
equal. The definition of f exists somewhere else and is, say, f(x1, x2,
x3) ¼ 2x1 þ 3x2 þ 4x3. Functions in programming are no different.

82 Introduction to VB.NET

Team-LRN

INPUT ARGUMENTS

Both functions and subroutines can take input arguments. The
input argument list, often called the parameters, has its own syntax
that requires separate consideration.

We can declare as many input arguments with their respective
data types as are needed, provided we separate each parameter
with a comma. The basic syntax is to specify a local name for the
value and a data type. For example, here is a simple subroutine that
prints out two numbers in the console window:

Private Sub PrintPrices(ByVal dblPrice1 As Double, _
ByVal dblPrice2 As Double)

Console.WriteLine(dblPrice1)
Console.WriteLine(dblPrice2)

End Sub

We then call the PrintNumbers subroutine. We specify the
parameters after the name as follows:

Sub Main()
PrintPrices(45.23, 65.54)

End Sub

In this example, the values 45.23 and 65.54 are passed to the
variables dblPrice1 and dblPrice2. Within the subroutine definition,
the values passed in will be known by the local names dblPrice1
and dblPrice2. Since this is a subroutine, there is no return value as
was the case in the Average() function. The output of this simple
program will be:

45.23
65.54

There are times when we may not be required to pass all the
arguments in a parameter list to a procedure. This is typically the
case when parameters later in the list are dependent on specific
values of variables earlier in the list. To declare a parameter as
optional, we include the Optional keyword in the parameter
declaration. When we declare a parameter as optional, all
subsequent parameters in the list must also be optional. Here is
an example:

Procedures 83

Team-LRN

Public Function PV(ByVal Rate As Double, _
ByVal NPer As Double, _
ByVal Pmt As Double, _
Optional ByVal FV As Double, _
Optional ByVal Due As Date) _
As Double

Here values for FV and Due are not required by the function
definition to perform the calculation and return the PV, present
value.

ByRef and ByVal

Let’s take a look at the important distinction between ByRef and
ByVal, the two methods for passing input arguments to functions.

Passing an input argument ByVal means that the original
variable, which is being passed as an input argument, will not be
changed by the function definition. That is to say, the procedure
makes a copy of the value and performs the operations within the
procedure definition on the copy, as opposed to the original
variable. This is demonstrated by the following example:

Sub Main()

Dim dblStockPrice# = 52.78

Increment(dblStockPrice)

Console.WriteLine("Stock price after increment is: " _

& dblStockPrice)

End Sub

Private Sub Increment(ByVal dblNum As Double)

Console.WriteLine("Increment subroutine was passed: " & dblNum)

dblNum += 1

Console.WriteLine("New value is: " & dblNum)

End Sub

This program outputs:

Increment function was passed: 52.78
New value is: 53.78
Stock price after increment is: 52.78

The dblStockPrice variable is unaffected by the addition
within the Increment subroutine. This is because only the value of
dblStockPrice has been passed to dblNum. dblNum is a completely
separate variable. ByVal is the default method for passing values

84 Introduction to VB.NET

Team-LRN

into functions. Now try this example again, but change ByVal in
Increment() to ByRef as follows:

Private Sub Increment(ByRef dblNum As Double)

This time the output is:

Increment was passed: 52.78
New value is: 53.78
Stock price after increment is: 53.78

Here a reference to the location of dblStockPrice in memory is
passed to dblNum, not the value of dblStockPrice. Therefore, as far
as the computer is concerned, both dblNum and dblStockPrice are
referring to the same physical space, or location, in memory. Hence,
when dblNum is incremented, the value of dblStockPrice changes
since they are both the same variable.

ParamArray

There is one additional keyword we can use in procedure
declarations—ParamArray. ParamArray enables us to pass an
arbitrary number of arguments into function. That is, ParamArray
allows an indeterminate number of input arguments passed as
either a one-dimensional list or an array of the type specified.
Within the function definition, the parameter array is treated as an
array of its declared type. To use a ParamArray, just specify the last
parameter in a parameter list as a ParamArray:

Sub Main()

Dim dblPrices As Double() = New Double() f52.34, 35.34, 0.15g

PrintPrices(dblPrices) ’ Pass as an array

PrintPrices(10.5, 95.34, 31.22, 74.23) ’ Pass as a list

End Sub

Private Sub PrintPrices(ByVal ParamArray dblStockPrices As Double())

Dim i As Double

Console.WriteLine("Portfolio of stocks contains " & _

dblStockPrices.Length & " stocks. _

The prices are: ")

For Each i In dblStockPrices

Console.WriteLine(" " & i)

Next i

End Sub

Procedures 85

Team-LRN

This program calls the function twice: The first time the array,
dblPrices, is passed with three prices; the second time a list of four
prices is passed. In Chapter 8, we will take an in-depth look at
arrays. Also, notice the use of the For Each . . . Next loop structure,
which we discussed in the previous chapter.

RETURN VALUES

As we said, functions have return values, which do not necessarily
have to be numbers; they can return any data type. We can set the
return value of a function by using the Return keyword. Here is a
function that returns a Boolean, expressing whether or not our
stock has hit a support level:

Public Function SupportLevel(dblStockPrice As Double, _

dblStrongSupport As Double) As Boolean

If dblStockPrice > dblStrongSupport

Return True

Else

Return False

End If

End Function

Functions can return any value type, such as doubles, integers,
Booleans, or strings. As we will learn in later chapters, functions
can also return reference types like arrays and objects.

BLACK-SCHOLES OPTION PRICING FORMULA

In programming VB.NET, and all other languages for that matter,
the process of creating our own user-defined procedures is exactly
the same as in algebra. However, as you may have noticed, we like
to give our procedures and input variables more descriptive names
than just f and x’s and y’s. Programmers prefer to use names like
Command1_Click() or BlackScholesCall() that describe the nature
of the operations performed within the procedure definition.

The Black-Scholes price of a call option is a function of several
input values, namely S, the price of the underlying stock; X, the
strike price; t, the time to expiration; r, the interest rate; and s, the
volatility; so that

y 5 BlackScholesCall(S, X, t, r, s)

86 Introduction to VB.NET

Team-LRN

The mathematical definition of the Black-Scholes equation for the
price of a call option is

BlackScholesCall ¼ SN(d1) �Xe�rtN(d2)

where

d1 ¼
ln (S=X) þ (r þ (s 2=2))T

s
ffiffiffiffi
T

p

and

d2 ¼ d1 � s
ffiffiffiffi
T

p

To make a VB.NET function that calculates the price of a call
option according to the Black-Scholes formula, we need four things:
a function name, a list of input arguments with their respective data
types, a return type, and a function definition.

Public Function BlackScholesCall(ByVal dblStock As Double, _

ByVal dblStrike As Double, _

ByVal dblTime As Double, _

ByVal dblInterestRate As Double, _

ByVal dblSigma As Double) _

As Double

Dim d1, d2, Nd1, Nd2 As Double

’ Calculate d1 and d2

d1 5 (Math.Log(dblStock / dblStrike) + (dblInterestRate + _

(dblSigma ^ 2) / 2) * dblTime) / _

(dblSigma * Math.Sqrt(dblTime))

d2 5 d1 2 dblSigma * Math.Sqrt(dblTime)

’ Calculate N(d1) and N(d2)

Nd1 5 NormCDF(d1)

Nd2 5 NormCDF(d2)

’ Calculate the price of the call

Return dblStock * Nd1 - dblStrike * Math.Exp(-dblInterestRate _

* dblTime) * Nd2

End Function

The code that calls the BlackScholesCall() function then
doesn’t need to know how the function calculates the result. It just
takes the output it needs and goes on its merry way. This definition
of the function will be somewhere else. We could call the function
in this fashion:

Procedures 87

Team-LRN

Sub Main()

Dim dblOptionPrice As Double

dblOptionPrice = BlackScholesCall(42, 40, .5, .1, .2)

Console.WriteLine(dblOptionPrice)

End Sub

The variable dblOptionPrice then will be set equal to the
return value of the function called BlackScholesCall(), which of
course calculates the price of a call option according to the
parameters, or input arguments, it receives.

The Black-Scholes formula is just one of several methods to
calculate the price of an option. We will not, however, cover option
pricing theory in depth in this book, although we will briefly cover
binomial trees in Chapter 8. We refer you to one of several other
books on the topic, especially The Complete Guide to Option Pricing
Formulas by Espen Gaarder Haug (New York: McGraw-Hill, 1998),
which contains particularly complete coverage of option pricing
methods.

Let’s create a short Windows application that calculates the
price of a call option using the BlackScholesCall() function.

Step 1 Open a new Windows application in Visual
Basic.NET and name it BlackScholes.

Step 2 Once the IDE for your new program is ready, in the
Project menu, click on Add Module to add a code
module.

Step 3 In the module, type in the BlackScholesCall()
function code as shown previously, or copy it from
the file named BlackScholesCall.txt from the CD and
paste it in. Your module should look like this:

Module BlackScholes

Public Function BlackScholesCall(ByVal dblStock . . .) As Double

’ Function definition in here.

End Function

End Module

Step 4 Since the BlackScholesCall() function itself calls
another function named NormCDF(), we will have
to add this function, which is an approximation of
the cumulative normal distribution function. Again,
in the Project menu, click on Add Module. Add the
following code to the new module:

88 Introduction to VB.NET

Team-LRN

Module NormalCDF

Public Function NormCDF(ByVal X As Double) As Double

’ Calculate the cumulative probability distribution

’ function for standard normal at X

Dim a, b, c, d, prob As Double

a = 0.4361836

b = -0.1201676

c = 0.937298

d = 1 / (1 + 0.33267 * Math.Abs(X))

prob = 1 - 1 / Math.Sqrt(2 * 3.1415926) * Math.Exp(-0.5 *

X * _ X) * (a * d + b * d * d 1 c * d * d * d)

If X < 0 Then prob = 1 - prob

Return prob

End Function

End Module

Step 5 At the top of your code window, click on the
Form1.vb [Design] tab to return to the GUI
development window. From the Toolbox, add a
label, named Label1, and a command button, named
Button1, to your form.

Step 6 Double-click on the command button to bring up the
code stub for the Button1_Click event. To this event
subroutine, add the following code:

Private Sub Button1_Click(ByVal sender . . .) Handles Button1.Click

Dim dblCallPrice As Double

dblCallPrice = BlackScholesCall(42, 40, 0.5, 0.1, 0.2)

Label1.Text = Str(dblCallPrice)

End Sub

Step 7 Run the program (see Figure 6.1).

The program you have just created illustrates the use of two
functions: the BlackScholesCall() and the NormCDF(). It also
illustrates the use of a subroutine, Button1_Click(). Again, notice
that the two functions accept input arguments and have a return
value, whereas the subroutine does not have a return value.

To review, the BlackScholesCall() function header shows that
the values passed into the function will be known as dblStock,
dblStrike, dblTime, dblInterestRate, and dblSigma within the
function definition. Also, the return value of the function will be of
type double as indicated at the tail end of the function header:

Procedures 89

Team-LRN

Public Function BlackScholesCall(ByVal dblStock As Double, _

ByVal dblStrike As Double, _

ByVal dblTime As Double, _

ByVal dblInterestRate As Double, _

ByVal dblSigma As Double) _

As Double

The function definition exists between the header and the
footer, End Function. The return value is set using the Return
keyword. Notice that within both the BlackScholesCall() and
NormCDF() functions, we call other functions from the Math
library, including Math.Exp(), Math.Log(), and Math.Sqrt(). These
are prebuilt functions in VB.NET that we can call in our programs
without having to provide function definitions for them.

MATH FUNCTIONS

If you program in Excel, you should be well versed in prebuilt
mathematical functions. Visual Basic.NET too has numerous built-
in mathematical functions that we can call in our programs. The
following table summarizes the available functions found in the
Math namespace that may be important in quantitative finance. To
call these functions, we need to precede the function name with the
class name Math and a dot (.). That is, the fully qualified function
name for the Max() function, for example, is Math.Max().

F I G U R E 6.1

90 Introduction to VB.NET

Team-LRN

Math

Functions Description Example

Abs() Returns the absolute value of x dblError ¼ Math.abs
(dblForecast - dblActual)

Ceiling() Returns the integer greater than
or equal to the input argument

dblSell ¼ Math.ceiling
(dblStockPrice)

Exp() Returns e (the base of natural
logarithms) raised to the
power of x

dblFV ¼ dblPV � Math.exp(dblR
� dblTime)

Floor() Returns the integer less than or
equal to the input argument

dblBuy ¼ Math.floor
(dblStockPrice)

Log() Returns the natural logarithm of x dblRate ¼ Math.log
(dblTuesday/dblMonday)

Max() Returns the maximum of two
input arguments

DblPrice ¼Math.max(0, x)

Min() Returns the minimum of two
input arguments

DblPrice ¼Math.min(0, x)

Sign() Returns: 1 if x is greater than 0; 0
if x equals 0; 21 if x is less
than 0

blnBUYSELL ¼ Math.sign
(dblMoonphase)

Sqrt() Returns the square root
of x

dblStDev ¼
Math.sqrt(myVariance)

STRING FUNCTIONS

A string is oftentimes just a thing that we print out or pass from one
part of our program to another without regard for its contents.
Other times, however, we need to know what’s inside. We might
need to verify its contents, modify it in some way, or extract a
specific piece of information from it. When dealing with options
quotes, for example, we sometimes need to parse out the stock
symbol, the expiration month, and the strike price, which are all
strung together in one long option symbol. The string functions we
will need to know, but certainly not all that are available, are
summarized below. As you will see, some of the functions are in the
Microsoft.VisualBasic.Strings class.

String

Functions Description Example

Chr() Returns the character
associated with a specific
character code

myChar ¼ Chr(65)

(continues)

Procedures 91

Team-LRN

String

Functions Description Example

GetChar() Returns a char value type
representing the character
from a specific index in a
string

myChar ¼
GetChar("IBMDP", 4)

Join() Concatenates an array of strings
into a delimited string

myString ¼

Join(myArray, Optional
delimiter)

Len() Returns the integer length of
String

myInt ¼ Len(string)

InStr() Returns an integer specifying
the starting position of the first
occurrence of a string within
another string

myInt ¼ InStr(1, string,
"D")

Left() Returns the leftmost length of
characters of a string

strTicker ¼
Microsoft.VisualBasic.
Left(strOptionsSymbol, 3)

Right() Returns the rightmost length of
characters of a string

strStrike ¼

Microsoft.VisualBasic.Right
(strOptionsSymbol, 1)

Mid() Returns length characters from
String, starting at position
Start

myString ¼ Mid(string,
start, length)

Split() Returns an array of strings
consisting of the delimited
strings (or words) of an input
argument string

myString ¼ “IBM April 80 Call”
myArray ¼ Split(myString)

StrComp() Returns 21, 0, or 1, depending
upon the result of a string
comparison

myInt ¼ StrComp(myStringA,
myStringB)

Many of these functions are helpful in parsing strings. Parsing
is the process of extracting smaller pieces or substrings from a
string. Here are some examples showing how to parse strings using
the string functions in the table.

The Split Function

The Split function accepts a string as an input argument and
returns an array consisting of the parsed values of the array.

Sub Main()
Dim strMyString As String
Dim strReturnArray As String()

92 Introduction to VB.NET

Team-LRN

strMyString = "INTC Jun 25 Call"
strReturnArray 5 Split(strMyString)
Console.WriteLine(strReturnArray(0))

End Sub

After running this code, the values in the strReturnArray will
look like this:

strReturnArray(0) = INTC
strReturnArray(1) = Jun
strReturnArray(2) = 25
strReturnArray(3) = Call

The Left, Right, and Mid Functions

The Left and Right functions are very similar to each other. The Left
and Right functions accept two input arguments—a string and a
length. The Left function returns a string containing the leftmost
“length” number of characters in the string. The Right function
returns the rightmost “length” number of characters. Here is an
example:

Sub Main()

Dim strTicker, strOptionsSymbol, strStrike As String

strOptionsSymbol = "IBMDP"

strTicker = Microsoft.VisualBasic.Left(strOptionsSymbol, 3)

strStrike = Microsoft.VisualBasic.Right(strOptionsSymbol, 1)

Console.WriteLine(strTicker)

Console.WriteLine(strStrike)

End Sub

The variable strTicker then will be equal to just IBM. strStrike will
equal P.

The Mid function accepts a string, a starting number, and a
length. It returns a string of length with a given string. So

Dim strMonth$ = Mid(strOptionsSymbol, 4, 1)

strMonth will equal D.

FORMATTING NUMBERS FOR OUTPUT

The Format() function converts and formats dates and numbers
into strings. Format() gives us a much greater degree of control over

Procedures 93

Team-LRN

how our data is presented for either screen or printer output. In
VB.NET, we can choose from predefined named formats or create
our own user-defined format for finer control. Numeric data,
regardless of type, can be formatted using the Format() function.
The following table explains some of the predefined formats and
some user-defined formats with their associated outputs:

Predefined

Format Function

Names Example Output

Assume that dblVolatility ¼ 0.1234567
General Number Format(dblVolatility, “General Number”) 0.1234567
Currency Format(dblVolatility, “Currency”) $0.12
Fixed Format(dblVolatility, “Fixed”) 0.12
Standard Format(dblVolatility, “Standard”) 0.12
Percent Format(dblVolatility, “Percent”) 12.34%
Scientific Format(dblVolatility, “Scientific”) 1.23E-01

User-Defined

Format

Function Example Output

Format(dblVolatility, “#.####”) .12345
Format(dblVolatility, “0.####”) 0.12345
Format(dblVolatility, “00000”) 00000
Format(dblVolatility, “#####”) [nothing]
Format(dblVolatility, “###%”) 12%
Format(dblVolatility, “###,###,##0.000”) 0.123
Format(dblVolatility, “\$###,###,##0.00”) $0.12

Note the use of the backslash in the final line of code. It allows the
computer to interpret the next character literally instead of as a
format character. Here is a quick code example that will print out
the value of dblVolatility as 0.1235:

Sub Main()
Dim dblVolatility# = 0.1234567
Console.WriteLine(Format(dblVolatility, "0.####"))

End Sub

CONVERSION FUNCTIONS

As mentioned in Chapter 4, Option Strict On requires explicit
conversion of data types in cases where data loss could occur. This

94 Introduction to VB.NET

Team-LRN

includes any conversion between numeric types and string types.
For example, data loss may occur when a string variable is
converted to a double or any other data type with less precision or
smaller capacity. If Option Strict is set to On, an error will occur if
an implicit conversion exists in our program. VB.NET provides
several functions for explicit conversion. Also, as we mentioned
earlier, in order to clarify and simplify the algorithms and logic in
our example programs, we have almost always left Option Strict by
default set to Off. However, production applications you create
should include Option Strict On and explicit type conversions
through the use of these conversion functions.

Conversion

Functions Description Example

Str() Converts a number to a string strPrice ¼ str(dblStockPrice)
Val() Converts a string to a number dblStockPrice ¼ val(strPrice)
CBool() Converts a value to a Boolean myBool ¼ CBool(myVal)
CChar() Converts a value to a char myChar ¼ CChar(myVal)
CDate() Converts a value to a date myDate ¼ CDate(myVal)
CDbl() Converts a value to a double myDbl ¼ CDbl(myVal)
CDec() Converts a value to a decimal myDec ¼ CDec(myVal)
CInt() Converts a value to an integer myInt ¼ CInt(myVal)
CLng() Converts a value to a long myLng ¼ CLng(myVal)
CShort() Converts a value to a short myShort ¼ CShort(myVal)
CSng() Converts a value to a single mySng ¼ CSng(myVal)
CStr() Converts a value to a string myStr ¼ CStr(myVal)
CType() Converts a value into a specified type myDbl ¼ CType(myValue, Double)

As you can probably imagine, not all conversions are possible.
We clearly cannot convert IBMDP into a double. Here is a short
program illustrating the use of a conversion function:

Option Strict On
Module Module1

Sub Main()
Dim dblVolatility# = 0.1234567
Dim sglVolatility As Single
sglVolatility = CSng(dblVolatility)
Console.WriteLine(sglVolatility)

End Sub
End Module

Procedures 95

Team-LRN

This program prints out the value of sglVolatility as .1234567 since
no data is lost in the conversion.

VALIDATION FUNCTIONS

As shown in the table below, VB.NET’s validation functions allow
us to check the data type of a value before we perform an operation.
You may have noticed in previous programs that errors occur if the
user enters a bad value. If, for example, instead of entering 1000, a
number to be used in a calculation, the user enters XYZ, the
program will end with an error since the calculation requires a
number, not a string. Validation functions allow us to check first to
see that the user-inputted values are correct. If not, we can prompt
the user with a message box to reenter the values properly.

Validation

Function Description Example

IsArray() Returns True or False indicating
whether a value is a reference
to an array

myBool ¼ IsArray(myArray)

IsConstant() Returns True or False indicating
whether a value is a constant

myBool ¼ IsConstant(myConstant)

IsDate() Returns True or False indicating
whether a value is a date

myBool ¼ IsDate(myDate)

IsNumeric() Returns True or False indicating
whether a value is a number

myBool ¼ IsNumeric(myNumber)

IsReference() Returns True or False indicating
whether a value is a reference

myBool ¼ IsReference(myRef)

Here is a short program that will keep prompting the user to
enter a valid numeric value until it gets the value.

Sub Main()

Do While 1

Console.WriteLine("Please enter a volatility:")

If IsNumeric(Console.ReadLine()) Then

Console.WriteLine("Thank you for the valid input.")

Exit Do

Else

MsgBox("Please enter a valid value.")

End If

Loop

End Sub

96 Introduction to VB.NET

Team-LRN

DATE FUNCTIONS

Visual Basic.NET provides a wealth of date functions that can be
used to manipulate dates, which, as you can probably imagine,
become very valuable in modeling fixed-income securities, futures,
and options. Here are several of the date functions:

Date

Function Description Example

DateAdd() Returns a date to which a
specific time interval has been
added

dtMyDate ¼ (“d”, Now, 30)

DateDiff() Returns the number of time
intervals between two dates

lngMyDays ¼ DateDiff(“d”,
Now, dtMyExpiration)

DateSerial() Returns a date from a year,
month, and day

dtMyDate ¼

DateSerial(1,1,2003)
DateValue() Returns a date from a string

representation of a date
dtMyDate ¼

DateValue(“January 1, 2003”)
Day() Returns an integer representing

the day of the month from 1 to
31

intMyDay ¼ Day(Now)

Hour() Returns an integer representing
the hour of the day from 0 to
23

intMyHour ¼ Hour(Now)

Minute() Returns an integer representing
the minute of the hour from 0
to 59

intMyMinute ¼ Minute(Now)

Month() Returns an integer representing
the month of the year from 1
to 12

intMyMonth ¼ Month(Now)

Now Returns the current date and
time from the computer’s
built-in clock

dtMyNow ¼ Now

Second() Returns an integer representing
the minute of the hour from 0
to 59

intMySecond ¼ Second(Now)

TimeOfDay Reads or sets the time from your
computer’s clock

dtMyTime ¼ TimeOfDay

Today Reads or sets the date from your
computer’s clock

dtMyDate ¼ Today

Weekday()
Returns an integer representing

the day of the week from 1 to
7 starting on Sunday

intMyDay ¼ Weekday(Now)

Year() Returns an integer representing
the year from 1 to 9999

intMyYear ¼ Year(Now)

Procedures 97

Team-LRN

Here is a short program illustrating the use of the DateDiff()
function.

Sub Main()
Dim intMyDays As Integer
intMyDays = DateDiff("d", #1/7/2003#, #4/23/2003#)
Console.WriteLine(intMyDays)

End Sub

This program calculates the number of days between these two
dates, 106. We can convert calendar days to trading days using the
formula:

Trading days = Calendar days - 2(Int(Calendar days / 7))

FINANCIAL FUNCTIONS

VB.NET also has several built-in financial functions, which we will
rarely, if ever, use in this book. They are, however, worth noting,
and some are listed in the table below. In Chapter 10 we will look at
how to create our own library of financial classes and functions.

Financial

Function Description

FV() Returns the future value of an annuity given the interest rate, number of
payments, payment, optional present value, and optional flag
specifying when payments are due

Ipmt() Returns the interest payment for a given period of an annuity given the
interest rate, payment period, number of payments, present value,
optional future value, and optional flag specifying when payments are
due

IRR() Returns the internal rate of return for a series of cash flows as an array
MIRR() Returns the modified internal rate of return for a series of cash flows

given the interest rate paid and interest rate received
NPer() Returns the number of periods for an annuity given the interest rate,

payment, present value, optional future value at maturity, and optional
flag specifying when payments are due

NPV() Returns the net present value of an investment given the interest rate
and cash flow values

Pmt() Returns the payment for an annuity given the interest rate, number of
payments, present value, optional future value, and optional flag
specifying when payments are due

98 Introduction to VB.NET

Team-LRN

Financial

Function Description

PPmt() Returns the principal payment for a given period of an annuity given the
interest rate, payment period, number of payments, present value,
optional future value, and optional flag specifying when payments are
due

PV() Returns the present value of an annuity given the interest rate, number of
payments, payment, optional future value, and optional flag specifying
when payments are due

Rate() Returns the interest rate per period for an annuity given the number of
payments, payment, present value, optional future value, and optional
flag specifying when payments are due

FV() Returns the future value of an annuity given the interest rate, number of
payments, payment, optional present value, and optional flag
specifying when payments are due

MsgBox FUNCTION

The MsgBox procedure displays a dialog box with a message, an
OK button, an optional icon, and a title. MsgBox can also return the
value of the button pressed by the user.

The title parameter is simply the text that appears across the
title bar of the message box. This defaults to your application’s
name. The MsgBox function can have one, two, or three buttons.
The function returns the value of the button your user pressed.
Before we talk about these values, however, we need to take a quick
detour and talk about VB.NET’s predefined constants.

The following is an example call to MsgBox:

Sub Main()

Dim myResponse As MsgBoxResult

myResponse = MsgBox("Continue?", vbYesNo + vbQuestion, "Continue")

End Sub

Or more simply,

MsgBox("Please enter valid data.",, "Option Calculator")

RANDOM NUMBER FUNCTIONS

The Rnd() function in VB.NET returns a random number from a
uniform distribution between 0 and 1. For example,

Procedures 99

Team-LRN

Sub Main()
Randomize()
Dim myRnd As Double = Rnd()
Console.WriteLine(myRnd)

End Sub

Make sure to call the Randomize() function to initialize, or
“seed,” the random number generator. You only need to call
Randomize() once, and so if your program needs random numbers,
just include the call in the form load event.

Several mathematical methods have been developed for
accomplishing the task of generating standard normal deviates,
including the well-known rejection method with the Box-Muller
transformation, which can be converted into program code.
However, we prefer a much simpler method, as shown here:

Function StdNormRnd() As Double

Return Rnd() + Rnd() + Rnd() + Rnd() + Rnd() + Rnd() + Rnd() + Rnd() + _

Rnd() + Rnd() + Rnd() + Rnd() - 6

End Function

In all cases, this method will suffice, and the StdNormRand()
function above will be used in this book. Here are two other
functions for random numbers from distributions other than the
standard normal. First, normal distribution with mean and
standard deviation:

Function NormRnd(dblMean As Double, dblStdDev As Double) As Double

Return StdNormRnd() * dblStdDev + dblMean

End Function

And second, the lognormal:

Function LogNormalRnd(dblMean As Double, dblStdDev As Double) As Double

Return Exp(dblMean + dblStdDev * StdNormRnd())

End Function

IMPLIED VOLATILITY

Most often in financial markets, we are interested in calculating the
volatility implied by an option’s price as opposed to the price itself,
since the price can be observed in the market. Rather than passing
the stock price, strike, time, interest rate, and volatility into a

100 Introduction to VB.NET

Team-LRN

function to get the price, we would rather pass the option price,
stock price, strike, time, and interest rate into a function and get the
volatility.

Analyzing and forecasting volatility is an important facet of
automated derivatives trading. In Chapter 5 we looked at some
ways of forecasting volatility based upon estimates of past, or
historical, volatility. If the implied volatility of an option, as
observed from its market price, deviates substantially from our
forecast of volatility between now and expiration, there may be a
trading opportunity. That is, if the implied volatility is substantially
higher than our forecast, we may consider selling the option.
Alternatively, if the implied volatility is substantially lower than
our forecast, we may consider buying the option.

Let’s augment the program we started earlier in this chapter to
calculate the implied volatility of a call option given an options
symbol, a price for the underlying stock, and the price of the call
option. We will use some of the string manipulation functions to
determine the month of expiration and the strike price from an
option symbol according to the following tables:

Expiration Month Codes

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Calls A B C D E F G H I J K L
Puts M N O P Q R S T U V W X

Strike Price Codes (Abbr.)

A B C D E F G H I J K L M

5 10 15 20 25 30 35 40 45 50 55 60 65

N O P Q R S T U V W X Y Z

70 75 80 85 90 95 100 7.5 12.5 17.5 22.5 27.5 32.5

Step 8 Add three more modules to your program to
hold the TimeTillExp(), ImpliedVolatilityCall(),
and StrikePrice() functions. Type in the function

Procedures 101

Team-LRN

definitions for the three functions as follows.
Alternatively you can copy and paste in the code
from the CD. Here is the code for the TimeTillExp()
function:

Module ExpirationTime

Public Function TimeTillExp(ByVal strOptionSym As String) As Double

’ Find the second to last character in the string.

Dim strMonthStrike As String 5 Right(strOptionSym, 2)

Dim chrMonth As Char 5 Left(strMonthStrike, 1)

Dim strMonth As String

Dim dtExpDate As Date

Select Case chrMonth

Case "A", "a", "M", "m" ’Use a Select . . . Case structure to

strMonth = "January" ’ transform the month character

Case "B", "b", "N", "n" ’ into the appropriate string.

strMonth = "February"

Case "C", "c", "O", "o"

strMonth = "March"

Case "D", "d", "P", "p"

strMonth = "April"

Case "E", "e", "Q", "q"

strMonth = "May"

Case "F", "f", "R", "r"

strMonth = "June"

Case "G", "g", "S", "s"

strMonth = "July"

Case "H", "h", "T", "t"

strMonth = "August"

Case "I", "i", "U", "u"

strMonth = "September"

Case "J", "j", "V", "v"

strMonth = "October"

Case "K", "k", "W", "w" ’ Assume all options expire on

strMonth = "November" ’ the 15th of the month. If the

Case "L", "l", "X", "x" ’ date has passed for the

strMonth = "December" ’ current year, find the date

End Select ’ for the following year.

dtExpDate = DateValue(strMonth & "15," & Year(Today()))

If Today() > dtExpDate Then _

dtExpDate = DateValue(strMonth & "15," & (Year(Today()) + 1))

Return (DateDiff(DateInterval.Day, Today(), dtExpDate)) / 365

End Function

End Module

Notice that the TimeTillExp() function makes use of several
functions we have looked at in this chapter, including Right() and
Left() to find the second-to-last character in the option symbol
string, DateValue() to convert a string representation of a date into
a variable of data type Date, Year() to determine the year
corresponding to the date returned by Today(), and DateDiff() to

102 Introduction to VB.NET

Team-LRN

calculate the number of days between Today() and the expiration
date, assuming options always expire on the fifteenth of the month,
which simplifies this example. Here is the code for the
ImpliedVolatilityCall() function:

Module ImpliedVol

Public Function ImpliedVolatilityCall(ByVal dblMarketPrice As Double,

ByVal dblStock As Double, _

ByVal dblStrike As Double, _

ByVal dblTime As Double, _

ByVal dblInterestRate As Double) _

As Double

Dim ImpliedVol, LowVol, HighVol, epsilon, mu, _

TheoreticalPrice, PreviousPrice As Double

HighVol = 10

ImpliedVol = HighVol

TheoreticalPrice = BlackScholesCall(dblStock, dblStrike, _

dblTime, dblInterestRate, HighVol)

epsilon = TheoreticalPrice - dblMarketPrice

mu = TheoreticalPrice - PreviousPrice

Do While (Math.Abs(epsilon) > 0.0000001)

If Math.Abs(mu) < 0.0000001 Then Exit Do

If epsilon > 0 Then

ImpliedVol = HighVol

HighVol = HighVol - (HighVol - LowVol) / 2

Else

LowVol = HighVol

HighVol = LowVol + (ImpliedVol - LowVol) / 2

End If

PreviousPrice = TheoreticalPrice

TheoreticalPrice = BlackScholesCall(dblStock, dblStrike, _

dblTime, dblInterestRate, HighVol)

epsilon = TheoreticalPrice - dblMarketPrice

mu = TheoreticalPrice - PreviousPrice

Loop

Return HighVol

End Function

End Module

And finally, here is the code for the StrikePrice() function:

Module Strike

Public Function StrikePrice(ByVal strOptionSym As String) As Double

Dim chrStrike = Right(strOptionSym, 1)

Select Case chrStrike

Case "A", "a"

Return 5

Case "B", "b"

Return 10

Case "C", "c"

Return 15

Case "D", "d"

Return 20

Case "E", "e"

Procedures 103

Team-LRN

Return 25

Case "F", "f"

Return 30

Case "G", "g"

Return 35

Case "H", "h"

Return 40

Case "I", "i"

Return 45

Case "J", "j"

Return 50

Case "K", "k"

Return 55

Case "L", "l"

Return 60

Case "M", "m"

Return 65

Case "N", "n"

Return 70

Case "O", "o"

Return 75

Case "P", "p"

Return 80

Case "Q", "q"

Return 85

Case "R", "r"

Return 90

Case "S", "s"

Return 95

Case "T", "t"

Return 100

Case "U", "u"

Return 7.5

Case "V", "v"

Return 12.5

Case "W", "w"

Return 17.5

Case "X", "x"

Return 22.5

Case "Y", "y"

Return 27.5

Case "Z", "z"

Return 32.5

End Select

End Function

End Module

Step 9 On your form, place four text boxes named
txtStockPrice, txtOptionSymbol, txtOptionPrice, and
txtImpliedVol. In the Button1_Click event, change
the code to the following:

104 Introduction to VB.NET

Team-LRN

Private Sub Button1_Click(ByVal sender . . .) Handles Button1.Click

Dim dblImpVol As Double

Dim strOptionSymbol$ = txtOptionSymbol.Text

Dim dblStockPrice# = txtStockPrice.Text

Dim dblOptionPrice# = txtOptionPrice.Text

Dim dblTimeTillExp# = TimeTillExp(strOptionSymbol)

Dim dblStrike# = StrikePrice(strOptionSymbol)

Dim dblRate# = 0.1

dblImpVol = ImpliedVolatilityCall(dblOptionPrice, _

dblStockPrice, dblStrike, dblTimeTillExp, dblRate)

txtImpliedVol.Text = Format(dblImpVol, 0.#####")

End Sub

Notice that our code employs several function calls to our
user-defined functions as well as to the Format() function.

Step 10 Run the program (see Figure 6.2). The results you
obtain will be different from the one shown in
Figure 6.2 since the time to expiration is always
changing. However, if you pick an expiration
around 6 months in the future, a strike price of 40,
a stock price of 42, and an option price of 4.76, your
implied volatility should be around 20 percent.

F I G U R E 6.2

Procedures 105

Team-LRN

SUMMARY

A procedure is a piece of code that performs a specific task.
Functions return a value to the calling statement. Subroutines are
exactly the same as functions except that they do not return a value.
In general, functions are preferred.

Procedures are the building blocks of VB.NET programs.
Modularizing our code into separate procedures, or blocks of code,
enables reusability and cuts down on errors and debugging time.

106 Introduction to VB.NET

Team-LRN

PROBLEMS

1. What is a subroutine? What is a function? What is the
difference between a subroutine and a function?

2. Write a line of code that calculates the number of days
between January 7, 2003, and November 9, 2002, and
assigns the value to a variable named intNumDays.

3. What function would we use to find the date 37 days from
today?

4. Write a line of code that assigns the value of the log of 1.05
to a variable named dblReturn.

5. What function could we use to make sure that a user-
entered value is actually a number?

6. How could we print out a randomly drawn number from
the standard normal distribution to five decimal places?

Procedures 107

Team-LRN

PROJECT 6.1

Create a Visual Basic.NET Windows application that calculates the
price and Greeks of a call option using the BlackScholesCall()
function and the functions for the Greeks found on the CD included
with this book. Allow the user to input an option symbol and parse
it as in the chapter example.

The project should allow the user to input the stock price and
the volatility. You can simply set the value of the interest rate in
your code. Your program should calculate the other two input
arguments necessary to calculate the prices and Greeks of an
option—the expiration and the strike—from the option symbol
using the functions discussed in the chapter.

PROJECT 6.2

The lognormal distribution assumes that the natural logarithm of
the price-relative from time t to t þ h is drawn from a normal
distribution with mean m and standard deviation s. The volatility
of a stock then is the sample standard deviation of the logs of the
price-relatives.

To simulate the price path of a stock, we need to first draw a
random number, Z, from the standard normal distribution. Using
the following equation, we can then derive a random stock price at
time t þ h.

Stþh ¼ Ste
½m(h)þsZ

ffiffi
h

p
�

Create a VB program that will allow the user to enter the initial
stock price, the mean and standard deviation, and the change in
time, h, and will generate a random series of 10 successive prices so
that each new price depends on the previous one. Remember that
volatility is an annualized number based on 256 trading days, and
so a change in time of 1 day would be 1/256 ¼ 0.0039. Be sure to
include this in your calculations. Also, use the Format() function so
that your random prices print out in a readable fashion. Try using
the MsgBox and the IsNumeric() function to validate user inputs.

108 Introduction to VB.NET

Team-LRN

C H A P T E R 7

Objects

Thus far, we have looked at procedural programming in Chapter 4
and event-driven programming in Chapters 5 and 6 using control
structures and procedures. Event-driven programming focuses on
the use of events, such as—among others—button clicks and form
loads, to control the execution of code. In event-driven program-
ming, different procedures run when different events happen. For
the remainder of the book, we will use things called objects and
object-oriented programming (OOP), although we will still use
events to illustrate code execution. OOP focuses on the use of
objects to control program flow. As you will see, OOP enables us to
perform very large and complex tasks with just a few lines of code.

OBJECTS AND CLASSES

In previous chapters, we have looked at several classes and objects
in our programs. The buttons that we put on our forms are objects.
The button objects, known by default names like Button1, are
actually instances of the button class. So we say that an object is an
instance of a class. Microsoft’s .NET Framework gives us hundreds
of premade classes, like buttons and text boxes as well as other
nonvisible classes, that we can instantiate and use in our programs.

VB.NET is an object-oriented programming language and as
such uses reference types to encapsulate things. These things,
called classes, have both data and functionality tied together within
their definitions. Classes have “member variables” that store data
and functionalities, or behaviors, held in procedures known as
methods or member functions. Classes may also have events associ-
ated with them in the way a button has a click event. In a working
program, different objects, which again are instances of classes,

109

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

work together, or talk to each other, through their respective public
interfaces. That is to say, private data within an object, which is not
accessible from the outside world, is available to the outside
programming environment through the object’s public interface.

For example, your name is a private piece of data about you.
No individuals can know your name unless they interact with your
public interface, your ears and your voice. They can get the value of
your name by asking you what your name is, and then you will tell
them the value of your private name data using your public voice
interface. To extend the analogy, when you were born, your parents
set the value of your name much like we can set the text property of
a button at design time. If you wanted to change, or set, your name
during your lifetime, that is at run time, you would say
You.Name ¼ “Gordon Gekko.”

In VB.NET, we can create our own user-defined classes and
create objects based on them. For example, we could create a class
called StockOption. In a program, an IBM April 80 call would be an
object, that is, an instance of the StockOption class.

The organization of a class can be difficult to envision to
programmers not used to thinking in terms of classes and objects.
Here are the elements that make up a class:

Member

Variables Description

Variable Simple data
Constant Read-only values shared by all objects in the class
Nested types Other types––classes, structures, interfaces, enums, etc.

Properties Description

Property Values of member variables are defined and retrieved
through public Get and Set methods of a property

Member Functions Description

Methods Procedure that provides the object with functionality
Constructor New() method runs when an object is instantiated
Finalization Method that runs just before an object is destroyed

Events Description

Event Message sent from an event source to listener objects,
called an event receiver

In order to use OOP in VB.NET, we need to understand four
main concepts of object-oriented programming: abstraction, en-
capsulation, inheritance, and polymorphism.

110 Introduction to VB.NET

Team-LRN

ABSTRACTION

Abstraction is the process of creating an abstract model of a real-
world object or thing. The process consists of taking the attributes,
or properties, and functionalities, or methods, of an object and
turning them into logical pieces of data and functionality.

Again, let’s look at a stock option. To turn a stock option
into a class in VB.NET, we need to think about the properties of a
stock option—that is, what nouns are associated with a stock
option, like the option symbol, the strike price, and the expiration
date, as well as the verbs, or functionalities, or behaviors, of a stock
option, like calculating implied volatility or calculating and
returning the price. When we come up with a list of nouns, the
“what it is” of an object, and verbs, the “what it does,” we say that
the object has been abstracted. So let’s assume for a minute we have
fully abstracted a StockOption class into the following nouns and
verbs:

Nouns Description

Option symbol The option symbol consists of a symbol for the
underlying symbol, a symbol for the month, and a
symbol for the strike price

Expiration month Derived from the option symbol
Strike price Derived from the option symbol
Underlying symbol Derived from the option symbol
Price of the option We will use the Black-Scholes model to set the price
Market price The option’s price observed in the marketplace
Volatility of the option We will need to set the volatility
Interest rate We will need to set the interest rate
Greeks We will need to calculate the Greeks
Time till expiration Calculated from the expiration month
Days till expiration Calculated from the expiration month
Calculated from the market price

Verbs Description

Derive expiration month Symbol for month is found in the option symbol
Derive strike price Symbol for strike price is found in the option symbol
Derive underlying symbol Symbol for the underlying symbol is found in the option

symbol
Calculate price Need a procedure to calculate Black-Scholes price
Calculate Greeks Need procedures to calculate the Greeks
Calculate trading days and

time till expiration
Need a procedure to calculate the days and time till

expiration using trading days
Calculate the implied volatility Need a procedure to calculate the implied volatility

Objects 111

Team-LRN

ENCAPSULATION

Encapsulation refers to the process of containing the abstracted
properties and methods into a class, exposing to the outside world
only those methods that absolutely must be exposed, which are
then known collectively as the class’s public interface. So classes
hide the implementation of their properties and methods and
communicate with the external programming environment
through the public interface. In this way encapsulation protects
the object from being tampered with and frees the programmer
from having to know the details of the object’s implementation.

In our StockOption example the outside programming
environment does not need to be exposed to the method of
calculating the price, and so this functionality is encapsulated and
made unavailable to the outside world. This idea will become
clearer as we go along. For right now let’s look at the code to
encapsulate just the private variable named strOptionSym to hold
the option symbol in the StockOption class, along with a public
property called Symbol to get the value of the strOptionSym.

Let’s create a StockOption class.

Step 1 Open a new Windows application named
OptionObject and add a single label, named Label1,
to Form1.

Step 2 Under the Project menu item, select Add Class. A
new class code window will appear.

Step 3 Add the following code to the StockOption class:

Public Class StockOption
Private strOptionSym As String
Public Sub New (ByVal strSymbol As String)

strOptionSym = strSymbol
End Sub
Public ReadOnly Property Symbol()

Get
Return strOptionSym

End Get
End Property

End Class

Notice that the class name is StockOption. Be careful.
StockOption is a class, not an object. In this example, strOptionSym

112 Introduction to VB.NET

Team-LRN

is private, and so we will not be able to get or set the value of it from
outside the object itself. We can, however, set the value of
strOptionSym through the constructor method known as the
New() subroutine.

So New() is called the constructor method. Any time an object
is instantiated, or born, using the New keyword, the object’s
constructor method executes. In this case the public subroutine
New() accepts a string and sets the value of strOptionSym, our
private member variable, equal to it. By requiring that an option
symbol be passed to the constructor method, we prevent ourselves,
or any other programmer using this class, from creating a new
option object without a symbol.

Also notice that we can get the value of strOptionSym through
the public property Symbol, which has a Get method within it.
Public properties provide us with access to private member
variables through Get and Set methods. Notice, however, that
our Symbol property is ReadOnly, implying that once the
strOptionSym member variable is set via the New() method, it
cannot be changed.

Creating a reference type, such as an object, out of a class
is a two-stage process. First, we declare the name of the object,
which will actually then be a variable that holds a reference to
the location of the object in memory. Second, we create an instance
of a class using the New keyword. This is when the constructor
method will run. Here is an example of showing the two-stage
process:

Dim myOption As StockOption
myOption = New StockOption("IBMDP")

Alternatively, we can accomplish the process using one line of
code:

Dim myOption As New StockOption("IBMDP")

In different situations it will be advantageous to use one or the
other of these two methods. We will use both methods over the
course of the book. As with variables, it is important to pay close
attention to the scope of your reference types, which will dictate in
many cases the method of instantiation.

Objects 113

Team-LRN

Step 4 In the Form1 code window, add the following code to
the Form1_Load event:

Private Sub Form1_Load(ByVal sender As. . .) Handles MyBase.Load

Dim myOption As New StockOption("IBMDP")

Label1.Text = myOption.Symbol

End Sub

Now when the program is running, myOption is the object,
whereas StockOption is the class. We set the value of strOption-
Symbol by passing a string into the constructor, New(), as shown.

Step 5 Run the program (see Figure 7.1).

The content of this program is not earth-shattering of course,
but congratulate yourself nonetheless; you have just created your
first class, your first object, and your first object-oriented program.

Of course, a stock option consists of a lot more data and
functionality than just a symbol. Also, as we saw in our abstraction
of a stock option, some of this other data might not be set from the
outside, but rather calculated internally. For example, we would
obviously prefer to have the option object derive the strike price
internally from the option symbol rather than require that we set it
explicitly from the outside. Let’s take a look at the fully developed
StockOption class found on the CD.

Step 6 Clear the StockOption class of the previous definition
and paste in the full StockOption class code from the
StockOption.txt file found on the CD.

F I G U R E 7.1

114 Introduction to VB.NET

Team-LRN

Step 7 Add three labels to your form and change the
Form_Load event code to:

Private Sub Form1_Load(ByVal sender As . . .) Handles MyBase.Load

Dim MyOption As StockOption 5 New StockOption("IBMDP")

Label1.Text = MyOption.Underlying

Label2.Text = MyOption.ExpMonth

Label3.Text = MyOption.Strike

Label4.Text = MyOption.BSPrice

End Sub

Step 8 Run the program (see Figure 7.2).

Once we have completely turned our model into computer
code, we say that the class has been encapsulated. A major benefit
of OOP is that because the data and methods encapsulated in
classes are so closely tied together, we do not need to pass
arguments back and forth as inputs to procedures. Rather, member
functions can access member variables directly within their
definitions. In the StockOption class code, notice that the member
methods, such as SetStrikePrice, are able to access the member
variables directly. Also notice that the BlackScholesPrice() method,
which contains a method definition setting the price of all
StockOption objects to 1.11, is overridable. This means that method
definitions in classes that inherit from the StockOption class may
override the definition in the base, or parent, StockOption class.

F I G U R E 7.2

Objects 115

Team-LRN

INHERITANCE

The best way to understand inheritance is to continue the
StockOption object example. A stock option, through abstraction
and encapsulation into a class and then instantiation, can be an
object in VB.NET. This object built on the StockOption class
contains only those properties and methods that are common to all
stock options. Certainly the method of calculating the price is not
common to all stock options. We calculate the price of a call
differently than we calculate the price of a put.

A call option is a stock option. As such, it has methods that are
not common to all stock options, such as calculation of its price. So
rather than create a whole new CallOption class, we can create a
derived, or child, class, called CallOption, that inherits all the
properties and methods from the base, or parent, StockOption
class. The CallOption class then may have some added properties
or functionalities, such as pricing algorithms that are unique to call
options on stocks. Likewise, we could create a PutOption class that
inherits from the base StockOption class and has its own specific
functionalities added on.

Continuing on then, an American call option is a call option.
So we could create a derived class called AmerCallOption that
inherits all the properties and methods from the base CallOption
class and so on. For the purposes of this book, however, we will
stop with the CallOption class.

A derived class can add functionality beyond that of the base
class, and it can also override methods of its base class. That is, a
derived class may replace a member function definition of the base
class with its own new definition. In such cases, the base class
definition should indicate which if any methods may be overridden
in derived classes using the Overridable inheritance modifier. Here
is a table of the inheritance modifiers:

Inheritance

Modifier Description

MustInherit Indicates an abstract class that cannot be instantiated, only inherited
MustOverride Must be overridden in the derived class. Necessitates a MustInherit

class
Overridable May be overridden in the derived class
NotOverridable Prevents overriding in derived classes
Overrides Indicates overriding a base class definition
Shadows Has the same name as a method in the base class

116 Introduction to VB.NET

Team-LRN

In our program, let’s create a derived class CallOption that
will inherit all the member variables and methods from the base,
StockOption class.

Step 9 In your program, add another class module and to it
add the following code:

Public Class CallOption

Inherits StockOption

Public Sub New(ByVal strSymbol As String)

MyBase.New(strSymbol)

End Sub

Protected Overrides Sub BlackScholesPrice()

Dim d1 As Double, d2 As Double, Nd1 As Double, Nd2 As Double

d1 = (Math.Log(dblStock / dblStrike) + (dblInterestRate + _

(dblSigma ^ 2) / 2) * dblTimeTillExp) / _

(dblSigma * Math.Sqrt(dblTimeTillExp))

d2 = d1 - dblSigma * Math.Sqrt(dblTimeTillExp)

Nd1 = NormCDF(d1)

Nd2 = NormCDF(d2)

dblBSPrice = dblStock * Nd1 - dblStrike * _

Math.Exp(-dblInterestRate * dblTimeTillExp) * Nd2

End Sub

End Class

In the derived class CallOption, the BlackScholesCall()
method definition overrides the definition in the base StockOption
class. Again, notice that the procedure in the CallOption class
called BlackScholesPrice() is a member function and, therefore, has
direct access to the member variables.

Also, because constructor methods are not inherited, we
needed to add a New() method to our derived CallOption class that
explicitly calls the constructor of the base class using the MyBase
keyword. The MyBase keyword always references the base class
within any derived class.

Step 10 Change the Form_Load event code to:

Private Sub Form1_Load(ByVal sender As . . .) Handles MyBase.Load

Dim MyCallOption As CallOption = New CallOption("IBMDP")

Label1.Text = MyCallOption.Underlying

Label2.Text = MyCallOption.ExpMonth

Label3.Text = MyCallOption.Strike

MyCallOption.IntRate50.1 ’ default IntRate = .1

Objects 117

Team-LRN

MyCallOption.StockPrice = 80

MyCallOption.Volatility = 0.25

Label4.Text = Format(MyCallOption.BSPrice, "#.0000")

End Sub

Step 11 Run the program (see Figure 7.3).

As we mentioned before, your program will have a different
price from the one shown in Figure 7.3 since the time till expiration
changes as time moves forward. Also, the StockOption class sets
the IntRate ¼ .1 by default, and so in future programs we will not
need to set it explicitly.

POLYMORPHISM

Polymorphism allows us to have one method name, or function
name, used in different derived classes, but yet have different
implementations, or functionalities, associated with that name
depending on the class. In our CallOption class above, and the
PutOption class also found on the CD, for example, we have
inherited a BlackScholesPrice() method from the parent Stock-
Option class, but yet each of the derived classes has its ownmethod
for calculation since the equations for Black-Scholes call and put
pricing are different.

EVENTS

Events allow an object, called the publisher or source, to notify
other objects, called the subscribers or receivers, when something

F I G U R E 7.3

118 Introduction to VB.NET

Team-LRN

happens. The most intuitive event is the button Click event. When
the user clicks a button, the Click event fires, and as we have seen,
we can write code that will execute when this happens. Creating
events in VB.NET is really quite easy. Here are the four steps to
create an event:

1. Create an event member in the publisher class.
2. Within the subscriber class, create an instance of the

publisher using the WithEvents keyword.
3. Fire the event in the publisher using the RaiseEvent key-

word.
4. Create a method in the subscriber that will run when the

event is fired using the Handles keyword.

We will not review events further. So for more information on
events, we refer you to the VB.NET help files.

ACCESS MODIFIERS

In the complete StockOption class, we have changed all the Private
access modifiers to Protected, because Private member variables
and Private methods are not accessible in derived classes. Take a
look at the BlackScholesPrice() method:

Protected Overridable Sub BlackScholesPrice()

Protected member variables and methods are accessible in
derived classes. So since we intended to create a derived class,
CallOption, from our base class StockOption, we needed to use the
Protected access modifier. Here are the access modifiers for classes:

Access

Modifier Scope

Public Accessible anywhere
Private Accessible only by methods of the class. Derived class methods cannot

access Private properties or methods
Protected Accessible by base class and derived class methods
Friend Accessible by base class methods, derived class methods, and certain

other classes
Shared Shared members are callable directly from the class without requiring an

instance of the class

Objects 119

Team-LRN

OVERLOADING

The complete StockOption class also contains two New() methods.
This is an example of method overloading. We can create as many
methods with the same name in a single class as are needed as long
as the lists of input arguments are different from one another, either
in number of arguments or in the data types of the arguments.

Methods other than New() that are overloaded must include
the Overloads keyword. Although not illustrated in the code for
StockOption, an example would be:

Public Overloads Function NormCDF(ByVal x As Integer) As Double

where this function overloads the original NormCDF() function
because it differs in its parameter list.

Public Overloads Function NormCDF(ByVal x As Double) As Double

NOTHING

Because the name of an object is really a variable holding a
reference to the location of the object in memory, we can assign a
value of Nothing to the object, which allows the .NET garbage
collector to dispose of the unused memory. This method disposes
of the instance of the object, but not the name of the object.

MyOption = Nothing

CALCULATING AT-THE-MONEY VOLATILITY

Very rarely, if ever, in financial markets can we look at an
at-the-money (ATM) option and calculate its implied volatility.
Yet in our discussions about markets, we often talk in terms of
ATM volatility. Quantitative research papers frequently use time
series of ATM volatility, and what’s more, many mathematical
models assume the reader understands that volatility means
at-the-money volatility. But what is ATM volatility if it cannot
be observed in the marketplace? The answer is that ATM volatility
is a value we must calculate from the implied volatilities of the
puts and calls with the strikes surrounding the ATM value—those

120 Introduction to VB.NET

Team-LRN

nearest, above and below, the price of the underlying symbol.
Furthermore, since time is always moving forward and expirations
are continuously drawing nearer, we have to include volatilities
for the nearby and second nearby expirations to come up with
a constant-maturity ATM volatility. That is, if we wish to refer
to an ATM volatility that is, for example, 30 calendar days
out (which is somewhat difficult to envision since only on 1 day
a month will an expiration be exactly 30 days away), we need a
mathematical construct to interpolate between options in the
nearby and second nearby expirations.

In this section we will use the Chicago Board Options
Exchange’s market volatility index (VIX) methodology for
calculating ATM volatility. As described by Robert Whaley in
his paper “The Investor Fear Gauge” (2000), the VIX represents
the ATM volatility for the S&P 100 (OEX) index. The CBOE
computes the value of the VIX from the prices of eight puts
and calls with the strikes nearest, above and below, the price
of the underlying security for the nearby and second nearby
expirations (Whaley, 2000, p. 1). The implied volatilities derived
from these eight options are then weighted to form a 30-calendar-
day, 22-trading-day, constant-maturity, ATM implied volatility for
the OEX index. The prices used for these eight options will be the
midpoints between the respective bids and offers.

While the implied volatilities for these eight options should
be calculated using a cash dividend–adjusted binomial method
to account for the facts that OEX index options are American
style and that the underlying index portfolio pays discrete
cash dividends, we will use the traditional Black-Scholes model
for European options to derive all required implied volatilities.
Forecasting dividends for the 100 stocks that make up the index
is beyond the scope of this book. As you can imagine, this will,
of course, lead to small deviations from the value of the actual
VIX.

If it happens that the implied volatilities for these eight
options are calculated using calendar days, then each must
be converted to a trading-day implied volatility. If the number
of calendar days to expiration is DaysC and the number of
trading days till expiration is DaysT , then DaysT is calculated as

Objects 121

Team-LRN

follows:

DaysT ¼ DaysC � 2 � int(DaysC=7)

To convert calendar-day volatilities to trading-day volatilities,
we multiply the eight by the square root of the ratio of the number
of calendar days to the number of trading days thusly:

sT ¼ sC

ffiffiffiffiffiffiffi
NC

NT

r !

Fortunately, the StockOption class already assumes trading days
for time to expiration, and so we will not need to make this
adjustment.

In practice, the risk-free interest rate we should use in the
calculation is the continuous yield of the T-bill with the maturity
most closely matching the option’s expiration. If the time till
expiration is shorter than 30 days, however, the 30 day T-bill rate is
used. The StockOption class sets the default interest rate to .1, and
we will just use that.

The calculations will be clearer if we look at an example. Let’s
assume today is February 3 and the OEX index is at 435.70. The
options with the nearest strikes above and below would be the 435s
and 440s. If we take the midpoints of the bids and asks of the puts
and calls for the next two expirations, February 16 and March 16,
for both these strikes, we will have eight option prices and eight
trading-day volatilities, as shown in Figure 7.4.

Now we need to average the eight implied volatilities to arrive
at a single ATM volatility 22 days hence, denoted by the gray X in
Figure 7.5. First we average the call and put volatilities in each of
the quadrants, respectively, to reduce the number of volatilities to
four.

In Figure 7.5, the subscript N refers to the nearby expiration
and S to the second nearby, and subscript A and B mean above and
below the current price of the underlying. In the upcoming
formulas, P stands for the price of the underlying, and X means the
strike price, so that XA refers to the strike price above the price of
the underlying security and XB to the strike price below. Also in
upcoming formulas, N refers to the number of trading days, so that

122 Introduction to VB.NET

Team-LRN

NN and NS refer to the number of trading days till the nearby and
second nearby expirations, respectively.

Second we average the two volatilities across each of the two
expirations. The average of the two nearby volatilities to arrive at
the ATM volatility for the nearby expiration is found using

sN ¼ sN ,B
XA � P

XA �XB

� �
þ sN ,A

P �XB

XA �XB

� �

F I G U R E 7.4

F I G U R E 7.5

Objects 123

Team-LRN

and the ATM volatility for the second nearby expiration is found
using

sS ¼ sS,B
XA � P

XA �XB

� �
þ sS,A

P �XB

XA �XB

� �

as shown in Figure 7.6.
Third and last, we average the two remaining volatilities to

arrive at a constant-maturity 22 trading hence, using

VIX ¼ sN

NS � 22

NS �NN

� �
þ sS

22�NN

NS �NN

� �

as shown in Figure 7.7. (These calculations are all taken from
Whaley, 2000, p. 12ff.)

Now let’s create a VB.NET Windows application that uses
option objects to calculate the constant-maturity ATM volatility for
IBM using the VIX methodology, again assuming no dividends.

Step 1 Open a new VB.NET Windows application called
ATMExample.

F I G U R E 7.6

124 Introduction to VB.NET

Team-LRN

Step 2 On the menu bar, select Project, Add Class three
times and paste in the code for the StockOption,
CallOption, and PutOption classes.

Step 3 Now we will need eight put and call objects and
eight corresponding prices. This will require 16
text boxes laid out in a pattern similar to that shown
in Figure 7.4 for the two expirations. Name the text
boxes with the following scheme: The name of
the text box for the nearby call option with the strike
below the underlying price should be txtCallNB
for Call, Nearby, Below. The text box for the second
nearby put with the strike price above the underlying
price should be txtPutSA for Put, Second, Above.
Figure 7.8 shows the respective names for the text box
controls.

Step 4 Add the following code to the Button1_Click event to
read in the price of the underlying IBM stock and
create eight put and call objects and set their
MarketPrices and StockPrices.

Dim UnderlyingPrice As Double = txtUnderlyingPrice.Text

Dim CallNB As New CallOption(txtCallNB.Text)
CallNB.MarketPrice = txtCallNBprice.Text
CallNB.StockPrice = UnderlyingPrice

F I G U R E 7.7

Objects 125

Team-LRN

Dim PutNB As New PutOption(txtPutNB.Text)
PutNB.MarketPrice = txtPutNBprice.Text
PutNB.StockPrice = UnderlyingPrice

Dim CallNA As New CallOption(txtCallNA.Text)
CallNA.MarketPrice = txtCallNAprice.Text
CallNA.StockPrice = UnderlyingPrice

Dim PutNA As New PutOption(txtPutNA.Text)
PutNA.MarketPrice = txtPutNAprice.Text
PutNA.StockPrice = UnderlyingPrice

F I G U R E 7.8

126 Introduction to VB.NET

Team-LRN

Dim CallSB As New CallOption(txtCallSB.Text)
CallSB.MarketPrice = txtCallSBprice.Text
CallSB.StockPrice = UnderlyingPrice

Dim PutSB As New PutOption(txtPutSB.Text)
PutSB.MarketPrice = txtPutSBprice.Text
PutSB.StockPrice = UnderlyingPrice

Dim CallSA As New CallOption(txtCallSA.Text)
CallSA.MarketPrice = txtCallSAprice.Text
CallSA.StockPrice = UnderlyingPrice

Dim PutSA As New PutOption(txtPutSA.Text)
PutSA.MarketPrice = txtPutSAprice.Text
PutSA.StockPrice = UnderlyingPrice

As mentioned earlier, the StockOption class already calculates
the time till expiration using trading days as opposed to calendar
days, and so no conversion of the volatilities will be necessary.

Step 5 Once these eight option objects are created, we need
to average the call and put volatilities in each of the
quadrants, respectively, to reduce the number of
volatilities to four. For this we will need four new
variables of type double. Add the following code to
the Button1_Click event:

Dim dblVolNB, dblVolNA, dblVolSB, dblVolSA As Double

dblVolNB = (CallNB.ImpliedVol + PutNB.ImpliedVol) / 2
dblVolNA = (CallNA.ImpliedVol + PutNA.ImpliedVol) / 2
dblVolSB = (CallSB.ImpliedVol + PutSB.ImpliedVol) / 2
dblVolSA = (CallSA.ImpliedVol + PutSA.ImpliedVol) / 2

Step 6 Now we will need to weight the above and below
volatilities to arrive at an average volatility for each of
the two expirations, nearby and second nearby.

Dim dblNearbyVol, dblSecondVol As Double

dblNearbyVol = dblVolNB *((CallNA.Strike - UnderlyingPrice) / _

(CallNA.Strike - CallNB.Strike)) + dblVolNA * ((UnderlyingPrice- _

CallNB.Strike) / (CallNA.Strike - CallNB.Strike))

dblSecondVol = dblVolSB * ((CallSA.Strike - UnderlyingPrice) / _

(CallSA.Strike - CallSB.Strike)) + dblVolSA * ((UnderlyingPrice - _

CallSB.Strike) / (CallSA.Strike - CallSB.Strike))

Step 7 And, finally, we can calculate the ATM constant
maturity volatility:

Objects 127

Team-LRN

Dim ATMVol As Double = dblNearbyVol * ((CallSA.DaysTillExp - 22) / _

CallSA.DaysTillExp - CallNA.DaysTillExp)) + dblSecondVol * ((22 - _

CallNA.DaysTillExp) / (CallSA.DaysTillExp - CallNA.DaysTillExp))

lblATMvol.Text = Format(ATMVol, "0.#####")

Step 8 Run the program (see Figure 7.9).

The results you get will be different from the results shown in
Figure 7.9 since the time-to-expiration calculations are continu-
ously changing. Thus on the CD we have included a spreadsheet
called ATMs.xls, against which you can check your answers.

F I G U R E 7.9

128 Introduction to VB.NET

Team-LRN

As you can see, creating and managing multiple objects can be
quite a difficult task codewise. Suppose, for example, we had a
portfolio of 100 options. How much coding would we have to do
then? Obviously we will need a superior method for dealing with
this situation. In the following chapter we will discuss arrays,
which are a convenient way to hold multiple value types, that is,
variables. In later chapters we will look at data structures, which
provide convenient methods for dealing with groups of objects
such as portfolios of options.

SUMMARY

In this chapter we introduced the concepts of classes and objects.
Object-oriented programming necessitates that we understand the
ideas of abstraction, encapsulation, polymorphism, and inheri-
tance. Further we used the StockOption and CallOption classes to
illustrate these concepts as well as access modifiers and method
overloading. Lastly we built a complex model using eight put and
call objects to calculate the ATM volatility for IBM. This was a
complex program!

Objects 129

Team-LRN

PROBLEMS

1. In OOP, what is meant by the term abstraction?
2. What is encapsulation?
3. What is polymorphism?
4. What is inheritance?
5. What are the differences between the access modifiers

Public, Private, and Protected?

130 Introduction to VB.NET

Team-LRN

PROJECT 7.1

To the CallOption and PutOption classes, add methods for the
Greeks. Build a Windows application that accepts user inputs for
an options symbol, a stock price, and a volatility, and calculates the
Black-Scholes price and Greeks for either a call or a put. Your
program should print out in labels all the necessary information
including the price and all the Greeks.

PROJECT 7.2

Create a Stock class. Although this class will be comparatively
simple, you should add Private member variables for, at least, the
ticker, price, dividend, and dividend date, along with Public
properties for each of them. You should set the ticker in the
constructor function New(). Then create a VB.NET Windows
application that creates an object based upon the Stock class using
user-entered values. Override the ToString() method to print out
the ticker and the price in a label.

In VB.NET, the overridable ToString() method is inherited by
every class by default. ToString() allows us to simply print out a
string representation of an object. Within your Stock class, you can
implement this method in the following way:

Public Overrides Function ToString() As String
Return strTicker & " " & str(dblStockPrice)

End Function

Objects 131

Team-LRN

This page intentionally left blank.

Team-LRN

C H A P T E R 8

Arrays

In VB.NET, arrays are objects that essentially group identical value
types together contiguously in memory in one or more
dimensions—hence, the Dim keyword. We can access any one
element in an array by referencing the array name and the
element’s index, or position or address, within the array. When
doing financial modeling, we use arrays frequently, and so a good
understanding of them and how they work is very important.
Arrays come in particularly handy when dealing with data, doing
matrix algebra, and creating binomial and trinomial trees.

ONE-DIMENSIONAL ARRAYS

Although arrays occupy space in memory, simply declaring an
array does not create the space. Rather, because an array is a
reference type, an array declaration creates a variable that stores a
reference to the space in memory occupied by an array. So creating
an array object is again a two-stage process. Here is a sample
declaration for an array of doubles:

Dim dblClosingPrices As Double()

Then the New keyword is necessary to create an actual array
object. The value in parentheses defines the upper bound for the
array. The lower bound is always 0.

dblClosingPrices = New Double(2) {}

A simple way to populate an array is to use the initializer list,
like this:

dblClosingPrices = New Double(2) {52.5, 51.4, 45.24}

133

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

Alternatively, the two statements could be combined:

Dim dblClosingPrices As Double() = New Double(2) {}

or using the initializer:

Dim dblClosingPrices As Double() = New Double(2) {52.5, 51.4, 45.24}

Since the index of the first element is always 0, the upper
bound, in this case 2, will always be 1 less than the number of
elements in the array, in this case 3. We can access any element in a
one-dimensional array by referencing its index, or address, within
the array.

dblClosingPrices(0) = 52.5
dblClosingPrices(1) = 51.4
dblClosingPrices(2) = 45.24

If we attempt to access an array element outside the upper
bound, say dblClosingPrices(53), we will get an error message
saying that the index was outside the bounds of the array. Should
the situation arise, we could also declare an array of the user-
defined data type QuoteData.

Dim qdPriceData As QuoteData() = New QuoteData(10) {}

And we could reference the individual elements of a QuoteData
array in the following way:

qdPriceData(3).dblClose = 43.45

TWO-DIMENSIONAL ARRAYS

A two-dimensional array object could be instantiated in one line
this way:

Dim dblCovariance As Double(,) = New Double(1,1) {}

We could declare and populate a two-dimensional array using
the two-line method and the initializer in this way:

Dim dblCovariance As Double(,)

dblCovariance = New Double(1,1) {{.057, .83}, {.192, -.12}}

134 Introduction to VB.NET

Team-LRN

We can access any element in a two-dimensional array by
referencing its index, or address, in the array.

Sub Main()

Dim dblCovariance As Double(,)

dblCovariance = New Double(1, 1) {{0.057, 0.83}, _

{0.192, -0.12}}

Console.WriteLine(dblCovariance(0, 0))

Console.WriteLine(dblCovariance(1, 0))

Console.WriteLine(dblCovariance(0, 1))

Console.WriteLine(dblCovariance(1, 1))

End Sub

This program prints out the elements of the dblCovariance array as:

.057

.192

.083
-0.12

As discussed in Chapter 5, we can access each element in a
two-dimensional array in VB.NET by writing a nested For . . . Next
loop structure, such as:

For Rows = 0 To 1
For Cols = 0 To 1

’ Do something with dblCovariance(Rows, Cols)
Next Cols

Next Rows

JAGGED ARRAYS

On occasion, the structure of the data in a program may be two-
dimensional, but not rectangular. That is, not every row will be the
same length. In such cases it may be advantageous from a memory
savings standpoint to use a jagged array. A jagged array is an array
that has rows of different lengths. In memory a jagged array is
really stored as an array of arrays. Here is how to declare a jagged
array in one line:

Dim dblBinomTree As Double()() = New Double(2)() {}

Binomial trees are valuable tools in derivatives pricing, and
there are several methods for building binomial trees in code using

Arrays 135

Team-LRN

arrays. Some methods only require a single-dimensional array.
However, in cases where the entire tree must be maintained in
memory, jagged arrays work quite well. In fact, binomial trees fit
rather elegantly into jagged arrays and waste no memory space.
Figure 8.1 shows different potential price paths of a stock.

The initial value in the tree, 100, is calculated using the
formula

100 ¼ S0 �D
0 �U0

The two prices after one step forward, 107.43 and 93.09, are found
using

107:48 ¼ S0 �D
0 �U1

93:04 ¼ S0 �D
1 �U0

As you can see, we calculate individual nodes on the tree by
incrementing the exponents of U and D. We can make these
calculations and populate a jagged array very easily since the
exponents map to the indexes of the array elements. Figure 8.2
shows the array elements with their values and indexes.

F I G U R E 8.1

136 Introduction to VB.NET

Team-LRN

We can initialize the elements of a binomial tree into a jagged
array as per Figure 8.2 in this fashion:

Sub Main()

Dim x, y As Integer

Dim dblStockPrice As Double = 100

Dim U As Double = 1.074837

Dim D As Double = 0.930374

Dim dblBinomTree As Double()() = New Double(3)() {}

For x = 0 To 3

dblBinomTree(x) = New Double(3 - x) {}

For y = 0 To 3 - x

dblBinomTree(x)(y) = dblStockPrice * D ^ x * U ^ y

Console.WriteLine("(" & x & ", " & y & ") = " & _

dblBinomTree(x)(y))

Next y

Next x

End Sub

Jagged arrays are held in memory and require that we declare
the upper bound of the first dimension first. That is, we first declare
the number of rows, and then we can go through row by row and
declare the upper bound of each particular row as in the line of
code above.

dblBinomTree(x) = New Double(3 - x) {}

ARRAY METHODS

Because arrays in VB.NET are instances of the Array class, and
therefore are objects, they have properties and methods associated

F I G U R E 8.2

Arrays 137

Team-LRN

with them. Here are some of the properties and methods as well as
several functions found in the System.Array namespace. To use
these functions we should include an Imports System.Array
statement above all the other code in a module.

Array

Properties Description Example

Length Returns the total number of
elements in the array

intA¼ myArray.Length

Rank Returns the number of
dimensions in the array

intA ¼ myArray.Rank

Array Methods Description Example

GetLength Returns the number of elements
in a given dimension

intA ¼ myArray.GetLength(0)

GetUpperBound Returns the upper bound of a
given dimension

intA ¼ myArray.
GetUpperBound(0)

System.Array

Functions Description Example

Clear Sets a range of elements within
the array equal to 0

Clear(SourceArray, 0, 3)

Copy Makes a copy of all or part of an
array given a length

Copy(SourceArray, TargetArray,
5)

IndexOf Finds the index number
associated with the first
occurrence of a value

intA ¼

IndexOf(SourceArray, “IBM”)

Reverse Reverses some or all of the
elements in an array given a
starting and ending index

Reverse(SourceArray, 1, 10)

Sort Sorts some or all of a one-
dimensional array in
ascending order

Sort(SourceArray)

Here is a short console application illustrating some of these
methods:

Imports System.Array

Module Module1

Sub Main()

Dim x As Integer

Dim dblReturns As Double() = New Double(4) {0.0176, 0.0083, _

0.0232, -0.0241, 0.0077}

Sort(dblReturns)

For x = 0 To dblReturns.GetUpperBound(0)

Console.WriteLine(dblReturns(x))

Next x

End Sub

End Module

138 Introduction to VB.NET

Team-LRN

This program declares and populates a one-dimensional array
named dblReturns. The Sort() function puts the elements in the
order from lowest to highest. The GetUpperBound() member
function returns the upper bound, 4, so that the For . . . Next loop
will run five times. Also notice the inclusion of the Imports
statement at the top. The function definition for Sort() is found in
the System.Array namespace. We will discuss namespaces in
greater detail in Chapter 10. This program prints out:

-.0241
.0077
.0083
.0176
.0232

DYNAMIC ARRAY SIZING

In situations where the number of elements in an array either is
unknown or will not be fixed, we use the Dim statement along with
the ReDim() procedure.

Dim dblCovariance As Double(,)

Before we can use this array, we must dimension bounds
using the ReDim statement. For example:

ReDim dblCovariance(4, 4)

All arrays in VB.NET are dynamic, and the ReDim() function
can be called as many times as is necessary. Be aware, though, that
VB.NET does not allow you to change the number of dimensions in
an array.

Also be careful because each time you ReDim an array, the
contents of the array are destroyed unless you use the Preserve
keyword. Preserve will keep the existing data intact and grow the
size of the array.

ReDim Preserve dblCovariance(5, 5)

As another example, say we want to read some historical
price data from a file, but we do not know how many items of

Arrays 139

Team-LRN

information are in the file. We could read through the file, count
how many items there are, and then use a single ReDim statement
to allocate an array of sufficient size.

What if the information was coming from a live data
connection? In that situation we would not have the opportunity
to determine the number of items ahead of time. The solution is to
use the Preserve keyword in conjunction with ReDim, as shown
below:

Dim dblPriceData As Double()

Dim intNumElements As Integer

Dim blnMoreData As Boolean

Do While blnMoreData

intNumElements += 1

ReDim Preserve dblPriceData(intNumElements)

‘ Read data feed and set blnMoreData to True if more data was read.

End While

PASSING ARRAYS TO FUNCTIONS

Visual Basic.NET allows us to pass arrays to functions as input
arguments and also return them from functions as output
arguments, or return values. Here is an example of the basic
syntax for passing arrays to and from functions:

Sub Main()

Dim dblReturns As Double() = New Double(9) {0.0203, -0.0136, 0.0012, _

0.0266, -0.0063, -0.0601, _

0.0307, 0.0123, 0.0055, _

0.0441}

Console.WriteLine(Average(dblReturns))

End Sub

Here, we have created an array of doubles and populated the array,
using the initializer, with 10 values representing daily returns. Then
we have passed the array to a function called Average() that accepts
an array of doubles as an input argument and returns a double,
which is the average of the elements in the array:

Public Function Average(ByRef InArray As Double()) As Double

Dim dblTotalReturn As Double

Dim x As Integer

Dim dblLength# = UBound(InArray, 1)

For x = 0 To dblLength

140 Introduction to VB.NET

Team-LRN

dblTotalReturn += InArray(x)

Next x

Return dblTotalReturn / (dblLength + 1)

End Function

Because arrays are always passed to functions by reference, it
is important to remember that certain operations performed on
those arrays, such as matrix transposition and inversion, will
actually destroy the original matrix. To avoid this situation, it may
be necessary to first make a copy of the array within the function
definition and then proceed by making calculations on the new
copy of the original array.

THE ERASE STATEMENT

The Erase statement clears an array and releases the memory used
by the array object. To reuse the array after Erase, we can use the
ReDim statement.

Erase dblReturns

UBOUND FUNCTION

The Ubound() function returns the upper bound of a dimension of
the array. It works the same as the array class member function
GetUpperBound() except that the array dimensions are 1 and 2 for
a two-dimensional array. For example:

Dim dblPriceData As Double(,) = New Double(10,5)
Dim intUpperBound As Integer
intUpperBound = UBound(dblPriceData,1)

intUpperBound will equal 10.

USING ARRAYS FOR DATA

When modeling returns, we often determine average rates of return
and volatilities. In this case, we need to use continuous rates of

Arrays 141

Team-LRN

return, such that

Ri ¼ ln
Si

Si�1

� �

Given historical returns, we can calculate the average return:

mR;t,T ¼
1

n

Xn
i¼1

Ri

We can calculate the variance of returns:

st,T
2 ¼

1

n

Xn
i¼1

(Ri � �RR)2

We can calculate the skew:

Skew ¼
n

(n� 1)(n� 2)

Xn
i¼1

Ri � �RR

s

� �3

The skewness of a distribution characterizes the degree of
asymmetry around its mean. Positive skewness indicates an
asymmetric tail extending toward more positive values. Negative
skewness indicates an asymmetric tail extending toward negative
values.

We can calculate the kurtosis:

Kurtosis ¼
n(nþ 1)

(n� 1)(n� 2)(n� 3)

Xn
i¼1

Ri � �RR

s

� �4
()

�
3(n� 1)2

(n� 2)(n� 3)

This returns the kurtosis of a data set. Kurtosis characterizes the
relative peakedness or flatness of a distribution compared with the
normal distribution. Positive kurtosis indicates a relatively peaked
distribution. Negative kurtosis indicates a relatively flat distri-
bution.

Step 1 In VB.NET, open a new Windows application called
DataArray.

Step 2 Add five labels to the form.

142 Introduction to VB.NET

Team-LRN

Step 3 Add five modules and in them, place the functions
for Average(), Var(), VarP(), Skew(), and Kurtosis()
from the CD.

Step 4 In the form load event, add the following code to pass
an array of return data into each of the functions:

Private Sub Form1_Load(ByVal sender As . . .) Handles MyBase.Load

Dim dblReturns As Double() = New Double(9) {0.0203, -0.0136, 0.0012, _

0.0266, -0.0063, -0.0601, _

0.0307, 0.0123, 0.0055, _

0.0441g

Label1.Text = Format(Average(dblReturns), "#.#####")

Label2.Text = Format(Var(dblReturns), "#.#####")

Label3.Text = Format(VarP(dblReturns), "#.#####")

Label4.Text = Format(Skew(dblReturns), "#.#####")

Label5.Text = Format(Kurtosis(dblReturns), "#.#####")

End Sub

Step 5 Run the program (see Figure 8.3). As with any
calculations youmake in code, be sure to verify them
against Excel’s built-in functions—Average(), Var(),
VarP(), Skew(), and Kurt().

F I G U R E 8.3

Arrays 143

Team-LRN

USING ARRAYS FOR MATRIX ALGEBRA

We often use matrix algebra when doing financial research. For
example, modern portfolio management techniques frequently
make use of covariance matrices. Using matrix notation, we can
calculate the variance of a portfolio in the following manner:

sP
2 ¼ v0Vv

where V is the covariance matrix and v is the vector of portfolio
weights. A covariance matrix, of course, exists in two dimensions,
where:

V ¼ Cov(rA, rB) ¼
1

n

X
[rA,i � E(rA)][rB,i � E(rB)]

So that, for example, a covariance matrix for a three-asset portfolio
is

V ¼

0:0025 �0:0011 �0:001
�0:0011 0:0058 0:0003
�0:001 0:0003 0:0048

2
4

3
5

and

v ¼

0:3
0:5
0:2

2
4

3
5

To calculate the portfolio variance, sP
2, we need to employ

some specialized matrix math functions that handle the algorithms
using two-dimensional arrays. Fortunately the CD contains several
math functions that manipulate two-dimensional arrays.

Step 1 In VB.NET, open a new Windows application called
MatrixArray.

Step 2 Add at least one label to the form.
Step 3 Add two modules and paste in the code for the

MMult2by1() and MMult1by1() functions.
Step 4 Add the following code to the Form1_Load event:

Private Sub Form1_Load(ByVal sender As . . .) Handles MyBase.Load

Dim dblCovar As Double(,) = New Double(2, 2) { _

{0.0025, -0.0011, -0.001}, _

{20.0011, 0.0058, 0.0003}, _

144 Introduction to VB.NET

Team-LRN

{20.001, 0.0003, 0.0048}}

Dim dblWeights As Double() 5 New Double(2) f0.3, 0.5, 0.2g

Dim dblPortVar As Double

dblPortVar = MMult1by1(MMult2by1(dblCovar, dblWeights), dblWeights)

Label1.Text = Val(dblPortVar)

End Sub

Step 5 Run your program (see Figure 8.4). Again, be sure to
verify your calculations against Excel’s built-in
function MMult().

USING ARRAYS FOR TREES

Here we will show a simple example using a jagged array to price
an American call option using a binomial tree. The call option has
the following attributes: stock price, S, is 100, strike price, X, is 100,
time till expiration is 3 months, interest rate, I, is 0.1, and the
annualized volatility, sigma, is 0.25. The binomial tree will consist
of three steps, as in the example using a jagged array previously in
the chapter. Each step in the tree then will be 3 calendar months or
21 trading days, 0.25 of a year, divided by 3, so that the change in
time for each step is t ¼ 0.25/3 ¼ 0.083333. This option will expire
in a total of three steps, one for each of the 3 months. So N ¼ 3. We
calculate U and D thusly:

U ¼ es
ffiffi
t

p

¼ e0:25
ffiffiffiffiffiffiffiffiffi
08333

p

¼ 1:074837

D ¼ e�s
ffiffi
t

p

¼ e�0:25
ffiffiffiffiffiffiffiffiffi
08333

p

¼ 0:930374

F I G U R E 8.4

Arrays 145

Team-LRN

We will add a variable A to shorten the calculations:

A ¼ e�I �t ¼ e�0:1 � 0:083333 ¼ 0:991701

Also, the probability of an up move is found, such that

P ¼
(eI �t �D)

U �D
¼

e0:1 � 0:083333 � 0:930374

1:074837 � 0:930374
¼ 0:5399892

Once we have declared and defined the necessary variables,
we can calculate the terminal payoffs for the option for each
outcome by calculating the intrinsic value in this way:

Treex,N�x ¼ max (S0 �D
x �UN�x �X , 0)

American-style options require that a decision be made at
each node about whether to exercise the option. So we must
compare the intrinsic value of the option with the risk-neutral
valuation at each node:

Treex,y�x ¼ max [S0 �D
x �Uy�x �X , A � (P � Treex,y�xþ1 þ (1 � P)

� Treexþ1,y�x]

where y ¼ N 2 1.
The value of the call option will then be Tree(0)(0).

Step 1 In VB.NET open a new console application.
Step 2 Add the following code:

Imports System.Math

Module Module1

Sub Main()

Dim x, y As Integer

Dim N As Integer = 3

Dim dblStockPrice As Double = 100

Dim dblStrike As Double = 100

Dim dblTimeStep As Double = .25 / N

Dim dblIntRate = 0.1

Dim dblSigma = 0.25

Dim U As Double = Exp(dblSigma * dblTimeStep ^ 0.5)

Dim D As Double = Exp(-dblSigma * dblTimeStep ^ 0.5)

Dim A As Double = Exp(-dblIntRate * dblTimeStep)

Dim P As Double = (Exp(dblIntRate * dblTimeStep) - D) / (U - D)

146 Introduction to VB.NET

Team-LRN

Dim dblBinomTree As Double()() = New Double(N)() {}

For x = 0 To N

dblBinomTree(x) = New Double(N - x) {}

dblBinomTree(x)(N - x) = Max((dblStockPrice * D ^ x * _

U ^ (N - x)) - dblStrike, 0)

Next x

For y = N - 1 To 0 Step -1

For x = 0 To y

dblBinomTree(x)(y - x) = Max((dblStockPrice * D ^ (x) * _

U ^ (y - x)) - dblStrike, A * (P * _

dblBinomTree(x)(y - x + 1) + (1 - P) * _

dblBinomTree(x + 1)(y - x)))

Next x

Next y

Console.WriteLine("The price of the call option is: " & _

dblBinomTree(0)(0))

End Sub

End Module

Step 3 Run the program by selecting Start Without
Debugging from the Debug menu item.

The value of the call option using this method is 6.6468, which
rounds to 6.65. Figure 8.5 shows a map of the values of
dblBinomTree()(). We can increase the accuracy of our pricing
model by increasing the number of steps, N. For example, if we
change N to 20, so that t ¼ 0.25/20 ¼ 0.0125, the value of the call
option is 6.19.

F I G U R E 8.5

Arrays 147

Team-LRN

SUMMARY

In this chapter, we have looked at how to create and manipulate
arrays of variables. We use arrays often in finance to hold data, do
matrix math, and build trees for pricing derivatives. Important
things to take note of are how to employ dynamic array sizing and
how to pass and return arrays to and from functions.

148 Introduction to VB.NET

Team-LRN

PROBLEMS

1. What is a jagged array?
2. How do we pass an array to a function?
3. Why is declaring an array a two-stage process?
4. Because arrays are reference types, what is the danger with

passing arrays to functions?
5. What is dynamic array sizing, and how is it accomplished?

Arrays 149

Team-LRN

PROJECT 8.1

Create a Windows application that creates a two-dimensional
covariance matrix given three one-dimensional arrays of returns
for three stocks. The covariance matrix should look like the
following:

sa,a sa,b sa,c

sb,a sb,b sb,c

sc,a sc,b sc,c

2
4

3
5

Hard-code the three arrays of returns and use the Covariance()
function on the CD to make the calculations. Print out the matrix in
labels on the form.

PROJECT 8.2

Create a Windows application that sorts an array of 20 returns.
Then print out the fifth lowest return in a text box. Hard-code the
returns in a one-dimensional array.

150 Introduction to VB.NET

Team-LRN

C H A P T E R 9

Problem Solving

Up to this point we have ignored program errors and debugging,
and we will do so again after this chapter. The reason for this is
simple: Intermingling program logic with error-handling logic
makes computer code very difficult to read and understand. This
book is primarily concerned with teaching the logic of modeling
derivative instruments and building automated trading systems.
However, problem solving is an extremely important topic to
consider when creating production software, and so we will
address it on its own in this chapter.

Unfortunately, exceptions or problems, in the form of syntax
errors and logic errors, inevitably creep into our programs. Very
rarely, if ever, do our programs run correctly the first time. More
often, several mistakes are present in the syntax or logic of our
programs that we must correct before the program will run
smoothly. If you haven’t already noticed, the longer and more
complex our programs become, the longer it takes to debug them—
in fact, exponentially longer. For these reasons, programming is
really a series of problems to be solved. We call the process of
finding and fixing errors in our applications debugging, and learning
to debug quickly is one of the most important skills you can gain as
a financial engineer. Fear not, however—the more experience and
knowledge you gain, the faster you will become at solving
problems.

In this chapter we will look at syntax, logic, and run-time
errors in a program, and we will explore some helpful techniques
for finding and correcting them. Furthermore, we will show you

151

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

how to write blocks of code called exception handlers that will
properly react to error conditions that occur while a program is
running and will prevent the program from crashing.

SYNTAX ERRORS

Syntax errors occur when our program code violates the rules of
Visual Basic.NET, and they will be caught when we attempt to
compile the program. Often syntax errors are misspelled variables
or keywords, improper use of VB.NET language elements, or
simple things like unmatched parentheses. Since VB.NET requires
variable declaration by default, misspelled variables are caught
immediately and can be fixed. This is because VB.NET IDE
recognizes syntax errors prior to compilation and puts squiggly
blue lines underneath them even while we are writing our code.
We’re guessing you’ve probably had significant experience with
syntax errors over the course of the previous chapters. If we
happen to miss a few syntax errors before compiling the program,
the compiler will catch and list them in the Task List window along
with a full description of the error.

LOGIC ERRORS

Logic errors are those that arise from incorrect results. In financial
engineering, our programs frequently make dozens or even
hundreds of mathematical calculations. Quite often our first
attempt at a mathematical algorithm will produce incorrect results,
for example, when a Black-Scholes calculator gives an incorrect
option price. The only way to avoid these types of logic errors is to
plan our programs carefully before writing code and to prototype
our algorithms in Excel so that we have something against which to
verify our results. Again, as you no doubt have found, logic errors
are the hardest type to find and fix since it may not always be clear
exactly where they originate. In the worst-case scenario, a logic
error can turn into a run-time error and crash our program.

152 Introduction to VB.NET

Team-LRN

RUN-TIME ERRORS

Run-time errors are those that often cause our programs to
terminate. Examples of logic errors that can turn into run-time
errors are divide-by-zero exceptions and array index out-of-range
exceptions. Other run-time errors may arise when we attempt to
connect to a database, open a file, or send an XML message, where
errors beyond our control disrupt the flow of our program.

What can be especially annoying about run-time errors is that
they may not show up the first time, or even the first ten times, we
execute a program—but only on the eleventh time. That is to say, a
specific run-time error may occur only when a certain sequence of
events takes place.

To deal with some potentially unavoidable run-time errors,
we can create exception handlers (blocks of code) to resolve or
handle errors in our programs and allow it to continue.

In order to demonstrate these different types of errors, we will
need an example program.

FORECASTING COVARIANCE

Covariances between assets play an important part of many
automated trading and risk management systems. As shown in
Chapter 8, correlations and covariances are calculated using
historical price data. But covariances can also be updated and
forecast using GARCH methodologies since covariance rates often
exhibit mean reversion. One GARCH approach forecasts covari-
ances thusly:

ŝstþ1, i, j ¼ (1� a� b) � C þ art, irt, j þ bŝst, i, j

and

ŝstþn, i, j ¼ C þ (aþ b) j�1
� (ŝstþ1, i, j � C)

where C is the long-run covariance.
Now let’s create a short program to forecast the covariance

between two stocks over the next 20 days.

Step 1 In VB.NET start a new Windows application named
CovarForecast.

Problem Solving 153

Team-LRN

Step 2 On Form1, add a single text box with the multiline
property changed to True.

Step 3 In the Project menu bar item, select Add Class. You
can leave the file name as the default Class1.vb.

Step 4 In the Class1 code window, change the class name to
CovarForecast and add the following code:

Public Class CovarForecast

Private dblForecasts As Double()

Private dblAlpha As Double

Private dblBeta As Double

Private dblPrevForecast As Double

Private dblCovariance As Double

Public Sub New()

dblForecasts = New Double(20) { }

dblPrevForecast = 0.00022627

dblCovariance = 0.000205927 0 Long Run Covariance

dblAlpha = 0.1943 0 Optimized coefficient

dblBeta = 0.5274 0 Optimized coefficient

CalcForecasts()

End Sub

Private Sub CalcForecasts()

Dim j As Integer

Dim newIBMreturn# = 0.0232

Dim newMSFTreturn# = 0.0352

dblForecasts(1) = (1 - dblAlpha - dblBeta) * dblCovariance + _

dblAlpha * newIBMreturn * newMSFTreturn + _

dblBeta * dblPrevForecast

For j = 2 To 20

dblForecasts(j) = dblCovariance + dblAlpha + dblBeta ^ _

(j - 1) * (dblForecasts(1) - dblCovariance)

Next j

End Sub

Public Function GetForecasts() As Double()

Return dblForecasts

End Function

End Class

End Sub

As with most classes, our CovarForecast class has several
Private member variables and a constructor function. Also the
CovarForecast class has a Private subroutine CalcForecasts() and a
Public method GetForecasts().

In the constructor method, we set the values of the appropriate
variables including the long run covariance, the optimized values
of alpha and beta, and the previous 1-day-ahead forecast. Within
the CalcForecasts() subroutine, we receive new data about our two
stocks, IBM and MSFT. Namely, a big up day in the market has

154 Introduction to VB.NET

Team-LRN

raised both boats significantly, and consequently the historical
correlation will increase. However, over the long term, we expect
the correlation to revert to the mean, as we will see in our forecasts.

Step 5 Back in the Form1 code window, add the following
code in the Form1_Load event:

Private Sub Form1_Load(ByVal sender As . . .) Handles MyBase.Load

Dim x As Integer

Dim myForecasts As Double()

Dim myCovars As CovarForecast

myCovars = New CovarForecast()

myForecasts = myCovars.GetForecasts()

For x = 1 To myForecasts.GetUpperBound(0)

TextBox1.Text &= x & " day ahead forecast: " & vbTab & _

Format(myForecasts(x), "0.0000000") & vbCrLf

Next x

End Sub

In the Form1_Load event, we have created a CovarForecast
object named myCovars. Once we instantiate an object based upon
the CovarForecast class, the constructor method performs all the
calculations and places the forecasted values into an array. We call
the GetForecasts method to retrieve this array and loop through the
elements to print the values in the text box.

Step 6 Run the program (see Figure 9.1).

If you copied the code correctly, your program will run.
However, the results you got were not the same as shown in Figure
9.1. We have devilishly hidden a logic error in the code. But first
let’s examine the syntax. The program code above contains no
syntax errors. So we will create one and see what happens.

Step 7 In the first line of the Form1_Load event, purposely
misspell myCovars as myCobars.

Dim myCobars As New CovarForecast()

Notice that in your code the reference to the correctly spelled
object myCovars is now underlined in blue. If we attempt to
compile the program, a build error will occur which will be
described in the Task List window. Double-clicking on this error
message in the Task List window will take you right to the line of

Problem Solving 155

Team-LRN

code containing the error, as shown in Figure 9.2. Syntax errors
such as this are common and easily fixed. Logic errors are much
more difficult to root out.

If we had not provided a picture showing the correct results,
how would we know there is a problem in the program? With no
method for verifying our calculations, we are lost.

As discussed in the methodology presented in Chapter 2, all
complex calculations should first be modeled in Excel before
conversion to programming code. Figure 9.3 demonstrates the
prototyping of this model in spreadsheet format. If we know that
the spreadsheet calculations were done properly, it is clear that our
coded formulas are incorrect. Focusing on the lines containing the

F I G U R E 9.1

156 Introduction to VB.NET

Team-LRN

F I G U R E 9.2

F I G U R E 9.3

Problem Solving 157

Team-LRN

math, we can use breakpoints and the Locals window to watch the
values of variables.

BREAKPOINTS

We can set breakpoints at different lines of code to suspend
program execution. Then we can examine the value of variables
currently in scope. To enable the debugging features such as
breakpoints, we must compile the program using the debug
configuration.

To set a breakpoint, we click the gray area to the left of the line
of code where we want to pause execution. Alternatively, we can
right-click over a line of code and select Insert Breakpoint.

Step 8 Set a breakpoint on the forecast calculation line
within the For . . .Next loop.

Step 9 Now run the program (see Figure 9.4).

When the program reaches our breakpoint, execution will be
suspended. In this suspended state, we can explore the current
values of our variables.

F I G U R E 9.4

158 Introduction to VB.NET

Team-LRN

Step 10 On the Debug menu bar, open the Locals window.
The Locals window shows the current value of
0.0003353174341, which is consistent with our
spreadsheet model, so clearly the bug is not in the
line that defines the value of dblForecasts(1) (see
Figure 9.5).

Step 11 Press the F5 key to restart execution. The program
will proceed through the loop one time and repause
when it again hits our breakpoint. This time the
Locals window shows the value of dblForecasts(2)
to be 0.19457416751494433. This is not right.

Step 12 Stop execution of the program altogether.

A quick inspection of the calculations line within the
For . . . Next loop shows that a pair of parentheses around dblAlpha
plus dblBeta was left out. Add them in so that the corrected line
reads as follows:

F I G U R E 9.5

Problem Solving 159

Team-LRN

dblForecasts(j) = dblCovariance + (dblAlpha + dblBeta) ^ _

(j - 1)*(dblForecasts(1) - dblCovariance)

Now run the program again and verify your answers against the
Excel model. This time the numbers should be correct.

In addition to the Locals window, there are several other
windows and commands that we will look at briefly.

OTHER DEBUGGING WINDOWS AND
COMMANDS

The Autos, Watch, and Me windows all enable us to examine the
current value of variables or objects currently within scope. In the
Watch window, we can examine current variable values by typing
the variable name into the Name field and pressing Enter. We can
also change the value of variables listed in the Watch window for
testing and debugging purposes. To alter a variable’s value, enter
the new value in the Value field.

Clicking the Continue button on the Debug menu bar will
resume execution of a program that we have paused. The Stop
Debugging button will stop the program. The Step Over button, as
its name implies, will cause execution of the next line of code. If the
next line of code is a function or subroutine call, the function will
execute in its entirety in that one step. The Step Into button, on the
other hand, executes only the next line. If the line contains a
function call, control will transfer to the function definition for line-
by-line debugging. And finally, the Step Out will cause a procedure
to finish and then will return control to the calling line of code.

Up to this point, we have briefly examined ways to quickly fix
syntax and logic errors in our programs. Often, however, other run-
time errors beyond our control may arise that cause our programs
to crash. We can actually write code that will handle run-time
errors on the fly and allow our program to continue.

EXCEPTION HANDLING

Exception handling is the process of catching and dealing with
run-time errors as they occur, according to a prescribed set of
instructions. Although we often use the terms exception and error

160 Introduction to VB.NET

Team-LRN

interchangeably, an exception is actually an object, which can
subsequently become an error and break our program if it does not
handle the exception properly. VB.NET supports two methods of
exception handling—structured and unstructured. Both methods
allow us to plan for exceptions and thereby prevent them from
disrupting the flow of our programs and potentially crashing them.
If you intend to create production software, you should consider
using exception handlers in any method that may itself generate an
error or that calls procedures that may generate them.

Exceptions that occur in procedures that are not able to handle
them are transmitted back to the calling procedure. If that calling
method is unable to handle it, it is then again transmitted back to
the method calling it and so on. In this way, the common language
run-time (CLR) searches for an exception handler andwill continue
up the series of procedure calls till it finds one. If no handler is ever
found, the CLR displays an error message and shuts the program
down. We can build into our programs structured or unstructured
exception handlers to catch exceptions before they become errors.

Of course, implementing an exception-handling strategy into
our software projects requires a fair amount of effort. As with
everything else in software development, planning pays off. Be
sure to build your strategy into the design process from the get-go.
It is very difficult to add exception-handling systems later on down
the road. You can be assured, though, that once a software system
has been designed and implemented properly, the exception
handling should not hinder performance.

Structured Exception Handlers

Structured exception handlers consist of Try . . . Catch . . . Final-
ly . . . End Try blocks of code that detect and respond to errors
during run time. (In the future, we will refer to these as simply
Try . . . Catch blocks.) The point in a program at which an exception
occurs is called the throw point. When something is “tried” and
creates an exception, the CLR throws the exception. If no exception
occurs, however, the program continues execution with the
statement following the End Try. In this way, structured exception
handlers help us create robust applications that rarely crash.

Problem Solving 161

Team-LRN

Try
[Some code in here that may generate an error.]

Catch exp as Exception
[Code to execute when a problem occurs.]

Finally
[Code that will always run.]

End Try

Within a Try . . . Catch block, the Try block will usually contain
some code we are wary of, that is, some code that may generate an
error. For example, if we are trying to connect to a database or send
a message over the Internet, a problem beyond our control may
occur and create an error. When an exception occurs, the Try block
terminates immediately, and the CLR searches the available Catch
statements and executes the first one that is able to handle an
exception of that type. Within a Try . . . Catch block, there are one or
more Catch statements, each specifying an optional exception
parameter, which represents a unique exception type. A
parameterless Catch will catch all exception types. In fact,
exceptions of any kind are actually Exception objects that inherit
from the System.Exception class. The Try . . . Catch mechanism
allows Exception objects and derived class objects to be thrown and
caught. Once caught, the Catch handler interacts with the
Exception object in a way that we can control.

The optional Finally block can contain code that will always
execute, regardless of whether an exception is thrown. Because it
will always run immediately before the Try . . . Catch block loses
scope, the Finally block is usually an excellent location in which to
place deallocation code, for example, close files or connections or
release objects.

Let’s add a Try . . . Catch block to our program.

Step 13 In the Form1_Load event, change the code to
instantiate a CovarForecast object to include the
following:

Dim myCovars As CovarForecast
Try

myCovars = New CovarForecast()
Catch exp As Exception

MsgBox(exp.Message)
Exit Sub

End Try

162 Introduction to VB.NET

Team-LRN

This Try . . . Catch block will catch any exceptions thrown
during the execution of the constructor method of the myCovars
object, which will propagate back up to our calling function. As it
stands now, all exceptions will be caught by the one and only Catch
statement, which will show a MessageBox with the Exception
object’s message property. The Exception.Message property
contains a default message associated with the specific Exception
object. This message can be customized by passing a message to the
Exception object’s constructor function.

At this point, however, no exceptions will be thrown by our
program. So let’s create one.

Step 14 In the constructor method of the CovarForecast
class, lower the number of elements in the
dblForecasts array to 10, which will cause an array
out-of-bounds exception.

dblForecasts = New Double(10) f g

Step 15 Run the program (see Figure 9.6).

Again, our Catch handler, which specifies Exception, will
catch all exceptions types.

Step 16 Change the Try . . . Catch block to the following:

Try
myCovars = New CovarForecast()

Catch exp As IndexOutOfRangeException
MsgBox(exp.Message)
Exit Sub

Catch exp As InvalidCastException
MsgBox(exp.Message)

F I G U R E 9.6

Problem Solving 163

Team-LRN

Exit Sub
Finally

MsgBox(“Finally block exectuing.”)
End Try

This time, we have defined two specific exception types—
IndexOutOfRangeException and InvalidCastException. Further,
we have added a Finally block, which will execute whether or not
we encounter an error.

Step 17 In the constructor method of the CovarForecast class,
change the dblPrevForecast to some string value.

dblPrevForecast = "IBM"

Step 18 Run the program (see Figure 9.7).

In this case, the exception will first be thrown by the invalid
cast from “IBM” to a double. Once the exception has been handled,
the Finally block will run and also show a message box. Notice also
that in the current set of Catch handlers, exceptions other than the
IndexOutOfRangeException or the InvalidCastException class will
not be handled and will cause the program to terminate.

Speaking of specific error types, be aware that .NET’s CLR
allows division by zero. Division by zero will produce a special
value “not a number,” written in string form as “NaN.” Our
programs can be made to test for NaN results by using constants
for positive or negative infinity.

Unstructured Exception Handling

In unstructured exception handling, we place an On Error GoTo
statement at the beginning of a block of code. The On Error GoTo
will then handle any and all exceptions occurring within that

F I G U R E 9.7

164 Introduction to VB.NET

Team-LRN

particular block regardless of class. When an exception is raised
after the On Error GoTo statement, the program executionwill go to
the line specified in the On Error statement. As with structured
error handling, if a call is made to another function, and an
exception occurs within that function, it will propagate back to the
calling method if it is not handled within the function. Here is the
basic layout of the On Error GoTo error handler:

Sub mySub()
On Error GoTo ErrorHandler

[Some code in here that may generate an error.]
Exit Sub

ErrorHandler:
[Code to execute when a problem occurs.]
Resume

End Sub

If an error occurs within mySub(), program execution will
automatically jump to the ErrorHandler label. The Resume state-
ment included in the ErrorHandler will then resume execution
back at the line where the error occurred. Of course, the Exit Sub
statement is mandatory, or else program execution will run into
ErrorHandler when it comes to the end of the subroutine code.
Let’s look at an example:

Step 19 Change the Form1_Load event code to the
following:

Private Sub Form1_Load(ByVal sender As . . .) Handles MyBase.Load

On Error GoTo ErrorHandler

Dim x As Integer

Dim myForecasts As Double()

Dim myCovars As CovarForecast

myCovars = New CovarForecast()

myForecasts = myCovars.GetForecasts()

For x = 1 To myForecasts.GetUpperBound(0)

TextBox1.Text &= x & " day ahead forecast: " & vbTab & _

Format(myForecasts(x), "0.0000000") & vbCrLf

Next x

Exit Sub

ErrorHandler:

MsgBox(Err.Description)

End Sub

Step 20 Run the program (see Figure 9.8).

Problem Solving 165

Team-LRN

The Err object, which is used only with the On Error GoTo
statement, contains properties that are set by the most recent
exception. The Number property holds a value corresponding to
the cause of the error. The Description property holds a text
message that describes the nature of the error. Unstructured error-
handling routines rely on the Err.Number property to determine
the error’s cause. If exceptions of multiple types may occur, our
error-handling routine should test the Number value for proper
handling.

An alternative to the On Error GoTo structure is On Error
Resume Next, which will cause program execution to continue
with the line of code immediately following the one that generated
the exception. In this way, On Error Resume Next allows our
program to continue despite an exception. In fact, the On Error
ResumeNext structure may in some cases be preferable to On Error
GoTo, especially when accessing objects. On Error Resume Next
allows us to place error-handling code specifically where errors
will occur, as opposed to shifting to another line in the procedure.

While we have touched only briefly on unstructured error
handling, be aware that, in general, use of the On Error GoTo
structure will degrade performance. Furthermore, unstructured
error handling is often difficult to debug. So in most cases,
structured error-handling techniques are preferable.

THE THROW STATEMENT

In VB.NETwe can use the Throw statement to purposely throw an
exception. Throw creates an exception object that we can
manipulate with either structured or unstructured exception-

F I G U R E 9.8

166 Introduction to VB.NET

Team-LRN

handling code. We often use Throw to trap errors within our code,
because as we have seen, VB.NET will move up the hierarchy of
procedures till it encounters an appropriate exception handler.
Whenever an exception is thrown with a Throw statement, the Err
object is set and a new Exception object is instantiated.

Step 21 In the CovarForecast class code, correct the previous
errors and add a Throw statement to raise a
DllNotFoundException.

dblForecasts = New Double(20) { }
dblPrevForecast = 0.00022627
Throw New DllNotFoundException("Error, error, error.")

Step 22 Run the program (see Figure 9.9).

In the next chapter we will look at how to create .dll files.

SUMMARY

In this chapter we have addressed solving problems in our
program that occur during design time and run time. Further, we
showed some techniques for finding logic errors in our programs.
VB.NET has a wealth of tools for helping financial engineers debug
production programs before implementation. Although for read-
ability’s sake, we will often skip error-handling routines in this
book, real software development necessitates that we include run-
time error-handling routines in the designs of our programs. In
general, it is preferable to take advantage of VB.NET’s structured
error-handling model and its inherent efficiency as opposed to the
unstructured On Error GoTo model.

F I G U R E 9.9

Problem Solving 167

Team-LRN

PROBLEMS

1. What do the terms syntax, logic, and run-time errors mean?
2. What do breakpoints allow us to do?
3. What window in the Debug menu bar lets us change the

value of a variable during run time?
4. What is structured exception handling? What is unstruc-

tured exception handling?
5. What is the System.Exception class?

168 Introduction to VB.NET

Team-LRN

PROJECT 9.1

Several errors may occur when a user enters a value to be used in
calculations. For example, a user may enter “IBM” for a stock price
or some invalid symbol in the txtTicker text box. Create a simple
VB.NETWindows application that will accept a stock ticker, a stock
price, and a number of shares to calculate a market capitalization.
Use a structured error-handling mechanism with multiple Catch
statements to prompt the user to reenter correct data based upon
the specific exception type.

PROJECT 9.2

Create a Windows application that accepts user inputs for an
options symbol, a stock price, and a volatility and that calculates
the Black-Scholes price and Greeks for either a call or a put. Add a
structured error-handling mechanism to ensure the program will
never break, regardless of what the user enters. Also, your program
should recognize specific exception types and prompt the user to
reenter valid values. Print out the calculated values in text boxes on
the screen.

Problem Solving 169

Team-LRN

This page intentionally left blank.

Team-LRN

C H A P T E R 10

.NET Type System

In Chapter 7 we looked at classes and objects. Yet in fact, classes
are only one of many mechanisms we can use to describe the
functionality of objects in our programs. What we really create in
VB.NET code are types. The term type represents a broader
description of any combination of data storage and functionality.
Classes are but one example of a type, as are variables and
functions.

Instances of types allocate space for data storage and provide
us with the behaviors we require. Deciding what types to use—
classes, modules, subroutines, functions, structures, etc.—in our
programs for data manipulation will be the focus of the remainder
of the technology portions of the book.

TYPES

A type is a generic term used to describe a representation of a
value. Instances of types, in their various forms, encapsulate all the
logic in our programs, and so fully understanding types is
fundamental to higher-level .NET programming, not just VB.NET.
Through the .NET Framework’s common language specification
and common type system, it is easy to use several different
languages to create a single application, although this book is only
concerned with Visual Basic.NET. This common type system looks
like this:

171

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

VB.NET Common

Type System Example

Interfaces
Value types Variables, constants, structures, et al.
Reference types Classes, arrays, etc.

Interfaces

An interface specifies a group of methods that can only be
implemented by another class or structure. We cannot then
instantiate interfaces by themselves. As a practical matter,
predefined .NET interfaces start with the letter I, as in ICollection,
IList, and IComparable. In the VB.NET help files, we can survey the
different interfaces and their respective members. In addition, we
can declare our own, user-defined interfaces. Here is an example:

Interface ITradable
Function Buy(ByVal Price As String) As Double
Function Sell(ByVal Price As String) As Double

End Interface

The ITradable interface indicates that we can buy or sell
something, but does not define how it happens. So different
financial instruments have the ability to be traded electronically,
and therefore, as objects, they should implement the ITradable
interface. We have not though specified exactly how they will
be traded, since the implementation of a trade for different
instruments may be very different. For example, routing a buy
order to the ISE may require a much different implementation than,
say, routing a buy order to the CME.

So we have deferred the implementation of the interface to the
definition of the class, which implements the interface. None-
theless, the “stub” is there.

We may at some point then implement an interface like this:

Class InstrObj

Implements ITradable

. . .

Public Function Buy(ByVal Price As String) As Double _

Implements ITradable.Buy

. . .

End Function

End Class

172 Introduction to VB.NET

Team-LRN

Classes may implement multiple interfaces although inter-
faces do not support multiple inheritance in derived classes. If a
class definition includes that of ITradable (the buy and sell
interfaces) and an object is instantiated, we can call the sell method:

Dim myInstr As New InstrObj()
myInstr.Sell("Market")

ASSEMBLIES

Assemblies are the fundamental building blocks of VB.NET
applications and are held in executable files (EXEs) or dynamic link
library files (DLLs). An assembly is a collection of types, which can
be modules, interfaces, classes, delegates, enumerations, struc-
tures, and other units of functionality. When we create a VB.NET
application, the most common assemblies are already referenced
for us. However, if we need to use an assembly that is not already
referenced, we need to add a reference to the corresponding DLL
file and use the Imports statement for the appropriate namespace.
Once we have added a reference to the assembly and imported the
namespace, all the classes, properties, methods, and other types in
the namespace are available to our application as if the assembly’s
code were part of it. Be aware that a single assembly might contain
multiple namespaces, and each namespace might contain multiple
types.

NAMESPACES

The VB.NET Framework class library is made up of namespaces,
which contain and organize types, which are defined in an
assembly. If two classes have the same name, we can still use them
both as long as they are in different namespaces and we qualify the
class names using the namespace. “Fully qualified” object names
are prefixed with the name of the namespace where the object is
defined. So, for example, System.Windows.Forms.ListBox is the
fully qualified name of the Listbox class since we have included the
namespace. All namespaces in VB.NET begin with either System or
Microsoft.

.NET Type System 173

Team-LRN

IMPORTS STATEMENT

The Imports statement does not itself provide access to assemblies,
but rather simplifies access to them by eliminating the need to fully
qualify named references. That is, we can use types defined within
the imported namespace of the assembly without qualification. A
module may contain any number of references and Imports
statements, as long as the Imports statements appear after any
Option statements and before any other code. For example,

Imports System.Data.OleDb

BUILDING AN OPTIONS LIBRARY

Creating an assembly with namespaces and types in VB.NET is
very simple. We simply need to create a new class library, build it,
and add a reference to the .dll file in future programs.

Step 1 In VB.NET, create a new project.
Step 2 In the New Project window, select Class Library and

name your project Options.
Step 3 Within the class definition add the code for the

StockOption class from the CD, the same one
discussed in Chapter 7.

Step 4 Add a new class module, name the class CallOption,
and paste in the code for the CallOption class from
the CD. Also add a class module for the PutOption
class, the same one discussed in Chapter 7.

Step 5 On the menu bar, select Build and Build Options.
Close VB.NET.

Now a DLL file has been created, and we can add a reference
to it in subsequent programs that we write and use these classes
without having to copy and paste over and over again. Let’s take a
look.

Step 1 Create a new Windows application named
LibraryExample.

174 Introduction to VB.NET

Team-LRN

Step 2 In the Project menu, click on Add Reference. When
the Add Reference window shows up, click on
Browse. In the Browse window, find the Options
project folder, and within the bin subfolder double-
click on the FinMath.dll file. Click OK.

Step 3 Add four labels to your form.
Step 4 In the Form1_Load event add the following code:

Imports Options

Public Class Form1

Inherits System.Windows.Forms.Form

Private Sub Form1_Load(ByVal sender As . . .) Handles MyBase.Load

Dim myOption As New CallOption("IBMDP")

myOption.StockPrice = 80

myOption.IntRate = 0.1

myOption.Volatility = 0.25

Label1.Text = myOption.Underlying

Label2.Text = myOption.ExpMonth

Label3.Text = myOption.Strike

Label4.Text = Format(myOption.BSPrice, "#.####")

End Sub

End Class

Notice the use of the Imports Options syntax at the
top of the coding. This informs the compiler that we
will be using classes located in the Options name-
space.

Step 5 Run the program (see Figure 10.1).

F I G U R E 10.1

.NET Type System 175

Team-LRN

VOLATILITY SMILES

On an options exchange, dozens of option contracts trade on each
stock. All the options with a given expiration month create a strike
structure of implied volatility, which usually has the shape of a
smile. All the options with a given strike form a term structure of
implied volatility. Together the strike and term structures create an
implied volatility surface. That is, any given stock has several
implied volatilities—though, as we saw in a previous chapter, we
can use four sets of near-the-money (nearby and second nearby)
puts and calls to calculate a single at-the-money volatility.

As a matter of practice, options with nearby expirations have
prices determined more by supply and demand as opposed to
volatility forecasts, whereas longer dated options have prices more
greatly influenced by historical volatility. That is to say, near-term
options tend to have implied volatilities greater than historical
volatilities would imply, and longer-term options tend to have
volatilities more in line with past movements of the underlying
security. The graph in Figure 10.2 illustrates a volatility surface
where across any given expiration there is a volatility smile.

F I G U R E 10.2

176 Introduction to VB.NET

Team-LRN

Models of the volatility smile, or skew, enable us to examine
how the out-of-the-money volatilities are related to at-the-money
volatility and how this relationship behaves as price, time, and
volatility itself change. There are a wide range of methods for
modeling this relationship between option strikes and volatility,
including linear and nonlinear regression models and interpolation
and cubic spline models. Many of these models require the use of
matrix algebra and regression.

Included on the CD with this book is the MatrixMath
assembly. Save this .dll file to your hard drive before you begin the
next project. The MatrixMath.dll contains the following shared
functions:

Matrix

Function Description Example

MMult() Matrix multiplication for
two 2-dimensional
matrices

dblArray ¼Matrix.MMult(Aarray, Barray)

MInverse() Matrix inversion dblArray ¼Matrix.Minverse (myArray)
MTranspose() Matrix transposition dblArray ¼Matrix.MTranspose (myArray)
MDeterm() Matrix determinant dblDouble ¼ Matrix.MDeterm (myArray)
MMult2by1() Matrix multiplication for a

2-dimensional matrix by
a vector

dblVector ¼ Matrix.MMult2by1
(AArray, BVector)

MultRegression() Multiple linear regression dblArray ¼
Matrix.MultRegression
(Aarray, Bvector)

In the case of the MatrixMath.dll, we will not instantiate any
objects based upon the class in this namespace. Rather we will
simply use the Public Shared class functions as you will see. Here is
an abbreviated code snippet from the MatrixMath.dll to illustrate
the use of Public Shared class functions:

Public Class Matrix

Public Shared Function MTranspose(ByRef . . .) As Double(,)
0 Matrix transpose code in here.

End Function

End Class

In all other ways, creating a .dll with class functions is the same as
previously discussed for class libraries.

In the next project we will parameterize one arm, or half, of the
front-month volatility smile using a linear structure with level (L),

.NET Type System 177

Team-LRN

slope (S), and curvature (C) parameters. This model is closely
related to the yield curve models proposed by Nelson and Siegel
(1987) and Wilmer (1996).

ŝsi ¼ L � x1 þ S � x2 þ C � x3

where:

x1 ¼ 1 x2 ¼ exp
Xi � P

t

� �� �

x3 ¼
Xi � Pð Þ

2

t
� exp

� Xi � Pð Þ

t

� �� �

and:

L ¼ the level of the smile, denoting the at-the-
money volatility

S ¼ the slope of the smile
C ¼ the curvature of the smile
Xi ¼ the strike price i

P ¼ the price of the underlying stock
t ¼ the optimized location parameter

In this model, the parameters L, S, and C are found using a
multiple-regression algorithm along with a simple iterative process
to find the optimal location parameter t. So the method is to
increase t by 1 and repeat the regression until the sum of the
squared errors is minimized. Let’s start by getting the multiple
regression set up properly. As always, we should first model the
algorithm using Excel before we code to ensure the correctness of
our algorithms. The Excel spreadsheet file LSCforVol.xls, which
models this method, is included on the CD.

Step 1 Open a new Windows application named LSCforVol.
Step 2 Add a single text box to Form1, and leave the default

name, Textbox1.Text. Also, change the Multiline
property of Textbox1 to True. You should now be able
to increase the size of Textbox1 on your form.

178 Introduction to VB.NET

Team-LRN

Step 3 On the menu bar, select Project and Add Reference.
Browse to find the MatrixMath.dll file on your hard
drive and click OK.

Step 4 In the Form1 code window, add the following code:

Imports MatrixMath

Public Class Form1

Inherits System.Windows.Forms.Form

Private Sub Form1_Load(ByVal sender As . . .) Handles MyBase.Load

Dim x As Integer

Dim Tau As Integer = 10

Dim AMatrix As Double(,) = New Double(7, 2) { }

Dim dblStrikes As Double() = New Double() _

f0, 5, 10, 15, 20, 25, 30, 35g

Dim dblVolatilities As Double() = New Double() _

f25, 26, 29, 35, 37, 43, 50, 65g

Dim LSCparams As Double() = New Double(2) f g

For x 5 0 To 7

AMatrix(x, 0) = 1

AMatrix(x, 1) = Math.Exp(dblStrikes(x) / Tau) * _

dblStrikes(x)

AMatrix(x, 2) = (dblStrikes(x) / Tau) * _

Math.Exp(-dblStrikes(x) / Tau) * dblStrikes(x)

Next x

LSCparams = Matrix.MultRegression(AMatrix, dblVolatilities)

TextBox1.Text = "Level: " & Format(LSCparams(0), "##.0000") & _

vbCrLf & "Slope: " & Format(LSCparams(1), "##.0000") & _

vbCrLf & "Curvature: " & Format(LSCparams(2), "##.0000") & _

vbCrLf & "Tau: " & Str(Tau)

End Sub

End Class

Step 5 Run the program (see Figure 10.3).

This model runs the LSC model for one arm of the volatility
skew with a hard-coded value of t ¼ 10. However, this is not the
value of t that minimizes the sum of the squared errors. The
Windows application LSCforVol included on the CD contains the
full code for calculating the optimized parameters for the above
model. In the optimized version the correct value for t is 12, giving
new values to the parameters L, S, and C as shown in Figure 10.4.

Another method for modeling volatility smiles is to use a
fourth-order polynomial such that

ŝsi ¼ b1 þ b2mþ b3m
2 þ b4m

3 þ b5m
4

where m ¼ the strike price minus the price of the underlying stock.
Let’s create a VB.NET program to model a volatility smile using

.NET Type System 179

Team-LRN

this algorithm. We have already created this model in Excel, which
can be found in the spreadsheet PolynomialForVol.xls on the CD.

Step 1 Open a new Windows application and name it
PolynomialForVol.

Step 2 Add a reference to the MatrixMath.dll file.
Step 3 Add a single text box to Form1, and leave the default

name, Textbox1.Text. Also, change the Multiline
property of Textbox1 to True. You should now be able
to increase the size of Textbox1 on your form.

F I G U R E 10.3

F I G U R E 10.4

180 Introduction to VB.NET

Team-LRN

Step 4 Add the following code:
Imports MatrixMath

Public Class Form1

Inherits System.Windows.Forms.Form

Private Sub Form1_Load(ByVal sender As . . .) Handles MyBase.Load

Dim x As Integer

Dim AMatrix As Double(,) = New Double(6, 4) { }

Dim dblStrikes As Double() = New Double() _

{-15, -10, -5, 0, 5, 10, 15}

Dim dblVolatilities As Double() = New Double() _

{47, 35, 20, 17, 19, 21, 28}

Dim PolyParams As Double() = New Double(4) f g

For x = 0 To 6

AMatrix(x, 0) = 1

AMatrix(x, 1) = dblStrikes(x)

AMatrix(x, 2) = dblStrikes(x) ^ 2

AMatrix(x, 3) = dblStrikes(x) ^ 3

AMatrix(x, 4) = dblStrikes(x) ^ 4

Next x

PolyParams = Matrix.MultRegression(AMatrix, dblVolatilities)

TextBox1.Text = "Beta1: " & Format(PolyParams(0), "##.00000") _

& vbCrLf & "Beta2: " & Format(PolyParams(1), "##.00000") _

& vbCrLf & "Beta3: " & Format(PolyParams(2), "##.00000") _

& vbCrLf & "Beta4: " & Format(PolyParams(3), "##.00000") _

& vbCrLf & "Beta5: " & Format(PolyParams(4), "##.00000")

End Sub

End Class

Step 5 Run the program (see Figure 10.5).

F I G U R E 10.5

.NET Type System 181

Team-LRN

SUMMARY

In this chapter we examined in some depth the VB.NET Type
System to gain a greater understanding about types, assemblies,
namespaces, and interfaces. Further, we looked at how to create our
own namespaces using the .NET Class Library template to create
Options.dll. We determined that we can add a .dll file to a program
we create by adding a reference to it and using an Imports
statement. We then looked at volatility smiles and explored how to
model them using the MatrixMath.dll file.

182 Introduction to VB.NET

Team-LRN

PROBLEMS

1. What are types?
2. What is a namespace?
3. What is an assembly?
4. How do we add a reference to a .dll file in VB.NET?
5. What is this Imports statement all about?

.NET Type System 183

Team-LRN

PROJECT 10.1

Create a .dll file using the StockOption, PutOption, and CallOption
classes adding in methods to the appropriate classes for the option
Greeks. Also, create a simple Windows application to test out
your .dll.

PROJECT 10.2

Create a .dll file called Statistics.dll. Include in the class library
Public Shared methods for the four moments of a distribution—
mean, variance, skew, and kurtosis—as well as any other statistical
functions you might want to use in the future. Again, make sure to
build a simple Windows application to test the functions in the .dll
file.

184 Introduction to VB.NET

Team-LRN

S E C T I O N T H R E E

Database Programming
Back Testing

In times of change, it is the learners who will inherit
the earth while the learned will find themselves
beautifully equipped for a world that no longer exists.

Eric Hoffer

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

This page intentionally left blank.

Team-LRN

C H A P T E R 11

Relational Databases

Financial analysis requires data. Furthermore, when doing
quantitative financial analysis, we often find that the data, such
as historical price or fundamental data, comes in a very simple
database structure such as a flat file, or worse, a spreadsheet. Flat
files are a primitive database design and often contain redundant
and inconsistent data. Those who understand the elements of good
database design certainly avoid the flat-file structure for all but the
simplest data, such as historical price data.

Financial analysts are almost always experienced in Excel.
And they should be. Excel is the most rapid development
environment for building and testing financial models. But Excel
is not a relational database, and it should not be used as such. Data
in Excel is easily corrupted, and too much data in a spreadsheet has
been known to overflow memory and cause crashes. Furthermore,
production systems run in Excel almost always suffer from quality
problems. If you are collecting and/or analyzing data on financial
markets, we suggest you use the right tool for the job—a relational
database.

It is difficult, however, to break away from Mother Excel.
Using Excel, it’s easy to paint a range of returns, for example, and
pass it to the covariance function. Being able to see the data and the
function calls is very comforting. If we use a database, however, we
cannot see it, and this can be somewhat scary. But fear not. In the
long run, we are much better off. There are far more advantages to
using a database than disadvantages. Using databases and VB.NET
programs gives us much more control and security when building
production systems.

187

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

Visual Basic.NET is an efficient platform for creating financial
applications that interact with data and databases. The front-end
applications insulate the user from the back-end complexities and
inner workings of the relational database management system and
protect the data from accidental alteration or deletion.

Just remember, in very general terms, a database stores
information and provides methods for managing the data,
including methods to retrieve existing data, add new data, and
edit data. As in the case of a flat file, a database may be a very
simple construct, consisting of a single file. But as we grow in our
understanding of databases, we will see that they can become very
powerful, full-scale client-server relational database management
systems. So it is important that we learn how relational databases
work in order to accomplishmore advanced analysis. As with other
topics discussed in this book, we cannot hope to cover all the topics
relating to relational databases. There are hundreds of books on the
market that deal with this topic alone. But we will be able to discuss
several relatively advanced topics and build three or four models
that demonstrate relational database design and connectivity as
used in quantitative research.

Let’s consider a financial markets example using a relational
database in the front office. On a trading desk, we may want to
attribute trading profits and losses to different factors so as to
assess the success of an automated trading system. But profit and
loss analysis and risk management require combining data in a
relational way with historical trade and price data along with profit
and loss information. This scenario requires the use of a relational
database management system.

In general there are two types of databases used in financial
markets: operational databases and analytical databases. Oper-
ational databases store dynamic data such as portfolio and position
information. Analytical databases hold static data such as historical
price or trade history data, often in a flat file. Regardless of the
brand of database software, both these types of databases will be
managed using the relational database model (RDM) (Hernandez,
1997, p. 3).

In the RDM, data is held in tables, which are made up of
columns, called fields, and rows, called records. Connections

188 Database Programming

Team-LRN

between different tables are defined in relationships. These
relationships between tables are established through shared fields.
The RDM has the advantage that, through its use of tables and
relationships between them, data integrity is ensured and
consistency and accuracy of data is guaranteed. Furthermore,
changes in the design of the database will not adversely affect the
VB.NET applications that we build to access it (Hernandez, 1997,
p. 16).

Programs that we create in VB.NET can interact with
databases through a set of objects known as MS ActiveX Data
Objects (ADO) and a specialized language called Structured Query
Language (SQL). SQL enables us to talk to a database from a
VB.NET application. SQL is the industrywide standard for
interacting with databases for everything from simple data
retrieval, called queries, to modification and updating of data,
and even to database creation. Regardless of which relational
database management system you are using, SQL will be the
language you will use to carry on a conversation in code. Relational
database management systems (RDBMSs) are software appli-
cations for building, managing, and modifying relational data-
bases. The most popular large-scale RDBMSs are from Microsoft,
Oracle, and Sybase. This may be a lot of new information if you are
not familiar with databases, but don’t worry—in Chapters 12 and
13 we will look at ADO and SQL in greater depth.

In order to fully understand the RDM and the following
chapters in this book, it is imperative that you become familiar with
“database-speak,” the terms and phrases used in the database
industry. We have used some of the terms already—tables, columns,
rows, relationships. Over the next few pages, we will define and
briefly discuss some of the more important terms. Afterward, we
will look at the three databases included on the CD that will
illustrate most of these terms.

TABLES

A table is the primary structure in a relational database. It consists
of columns and rows, often called fields and records. Tables
represent items, such as historical data for IBM, and events, such as

Relational Databases 189

Team-LRN

trades. Tables should then have names that describe the data they
hold, like IBMData, or just IBM, or OptionTrades. Further, tables
can be either data tables, which supply information such as
historical prices, or validation tables, which implement data
integrity. For example, we may have a table that contains a list of
options’ expiration dates.

FIELDS

A field, or column, represents a characteristic of a record. For
example, our IBMData table would probably have a ClosePrice
field. Fields then have names, data types, and lengths. Data in
databases can be alphanumeric, numeric, or date/time. Also, fields
can contain distinct or multipart values and may have values that
are calculated.

RECORDS

A record, or row, holds the actual data in a table. A single record in
a table is made up of one row containing all the columns in the table
including a primary key that uniquely identifies a record. So
January 21, 2003, identifies a unique record, or data point, of
IBMData. The full record contains the date, open, high, low, and
closing prices and the volume.

PRIMARY KEYS

Primary keys are special fields that uniquely identify a record in a
table. So, as in the previous example, the Date field represents a
unique record in a table of historical prices. Every table in a
database must have a primary key, and no two tables should have
the same primary key. Primary keys ensure that each record in a
table is uniquely identifiable. Therefore, each element of the
primary key field must be unique and cannot be null. So no
duplicate dates would be allowed in our example.

190 Database Programming

Team-LRN

FOREIGN KEYS

Foreign keys establish relationships between pairs of tables.
Relationships between two tables arise when the primary key
column in one table is identical to the foreign key column in the
other. In a later example, we will see a graphic depiction of a
relational database showing the primary and foreign keys for
different tables along with arrows representing the relationships
between them.

RELATIONSHIPS

As we have seen, relationships are connections between pairs of
tables, through the use of primary and foreign keys. There are three
different types of relationships: one to one, one to many, and many
to many.

One-to-One Relationships

A relationship is said to be one to one if a single record in the first
table is related to a single record in the second table, and vice versa.

One-to-Many Relationships

A relationship is said to be one to many if a single record in the first
table can be related to several records in the second table, but at the
same time a single record in the second table can only be related to
a single record in the first table. It may seem a little confusing right
now, but a later example will make this idea quite clear.

Many-to-Many Relationships

A relationship is said to be many to many if a single record in the
first table is related to many records in the second table, and vice
versa. In the case of a many-to-many relationship, we need to create
a linking table by copying the primary key from each table into the
new table. We suggest you find a good book on database design
before you attempt to build complex databases that include many-
to-many relationships.

Relational Databases 191

Team-LRN

QUERIES

A query is an SQL statement used to retrieve rows of information
from one or more tables. Queries will often also contain search
criteria to limit the amount of data returned from the tables. For
example, we may create a query that retrieves the trade data only
for the month of March 2001.

SQL queries also allow us to join tables. Joining tables enables
use of data from several tables in a relational database for a single
purpose. For example, we could display a single column from one
table or several columns from multiple tables in a single query.
From this, you may begin to see the flexibility and power of
relational databases.

NORMALIZATION

Often you will hear database professionals talk about normal-
ization or normal forms. Normalization is the process of breaking
down a large table or tables into smaller tables in order to eliminate
duplication of data and to prevent certain problems that commonly
arise with database interaction. A normal form is a set of rules that
test a table structure to ensure it is sound and free of errors. There
are at least five normal forms—first through fifth—used to test for
specific sets of problems. Tables we will use are in at least third
normal form since each one has a primary key that uniquely
identifies each record.

DATABASE DESIGN

Creating proprietary databases from scratch is no small task. It
necessitates examinations of the business purposes of the database
as well as the technical means to implement them. In short,
designing relational databases requires a process or methodology.
Doing so without one can lead to disaster. Again, several good
books on relational database design have already been written, and
so we will quickly review the process. Michael Hernandez in his
book Database Design for Mere Mortals (1997) outlines a seven-phase
process for database design:

192 Database Programming

Team-LRN

1. Define the purpose of the database and the tasks that users
will perform against it.

2. Analyze current database solutions.
3. Create tables, fields, and primary keys that characterize the

subjects the database will track.
4. Determine the relationships that exist between tables.
5. Define the constraints or business rules for the data.
6. Develop ways to look at or view the data.
7. Review the integrity of the data, including checking the

field specifications, testing the validity of relationships, and
reviewing the business rules.

A well-designed database is easy to modify structurally,
allows for efficient retrieval of data, and makes it easy for devel-
opers to build applications to connect to it (Hernandez, 1997, p. 28).

ACCESS DATABASES

MS Access databases are relational databases supported by all
Microsoft Windows environments. You do not need to have MS
Access software installed on your computer to interface with
Access databases through VB.NET. In an Access database, all the
various parts of the database are stored in a single file, which has an
.mdb extension. The CD contains three Access databases—
Finance.mdb, DirtyFinance.mdb, and Options.mdb—that we will
use over the course of the remainder of the book. If you have MS
Access software on your computer, feel free to open these databases
in Access and examine their structures. Let’s take a look at each of
them.

The Finance.mdb Database

Finance.mdb is an MS Access database included on the CD with
this book that uses flat files to hold daily historical price data for 13
stocks and the S&P 500. The individual data tables in Finance.mdb
are named AXP, GE, GM, IBM, INTC, JNJ, KO, MCD, MO, MRK,
MSFT, SUNW, WMT, and SPX. In addition, there is a validation
table named Tickers, which contains the 13 stock ticker symbols
shown.

Relational Databases 193

Team-LRN

The 14 data tables consist of the primary key column, labeled
Date, and five other columns named OpenPrice, HighPrice,
LowPrice, ClosePrice, and Volume. Each table holds 12 years of
daily price data from January 2, 1990, to December 31, 2002. Table
11.1 is a sample of the IBM table showing the structure.

The Tickers validation table consists of a single column named
Symbols, which holds the ticker symbols for each of the 13 stocks.
Table 11.2 is a sample of the Tickers table.

We have made every attempt to ensure that the data in the
Finance.mdb database is clean and free from errors. This is not the
case with the DirtyFinance.mdb database.

The DirtyFinance.mdb Database

The DirtyFinance.mdb Access database included on the CD
purposely contains dirty data. It is identical in every way

T A B L E 11.1

Date OpenPrice HighPrice LowPrice ClosePrice Volume

2-Jan-90 23.54 24.38 23.48 24.35 1760600

3-Jan-90 24.53 24.72 24.44 24.56 2369400
4-Jan-90 24.62 24.94 24.56 24.84 2423600
5-Jan-90 24.81 25.25 24.72 24.78 1893900
8-Jan-90 24.66 25.06 24.66 24.94 1159800
2-Jan-90 23.54 24.38 23.48 24.35 1760600

T A B L E 11.2

Symbols

AXP

GE
GM
IBM

194 Database Programming

Team-LRN

structurally to the Finance.mdb data. The only difference is that we
have gone through and corrupted the data using all kinds of sly
and malicious techniques. But the errors we have created are
typical of those youwill encounter in real data purchased from data
vendors. In Chapter 14 it will be your job to build a VB.NET
program that finds the dirty data and to cleanse it.

The Options.mdb Database

The Options.mdb Access database uses a relational database
structure to hold information about stocks and options as well as
stock trades and option trades. In fact, there are four tables in the
Options.mdb database representing each of these things—Stocks,
OptionContracts, StockTrades, and OptionTrades. As we saw
earlier, the relationships between two tables in a relational database
are made possible by common primary and foreign keys. In
Options.mdb, for example, the Stock and StockTrades tables are
related through a StockSymbol primary key in the Stock table and
the foreign key StockSymbol column in the StockTrades table.
Figure 11.1 shows the structure or schema of the Options.mdb
database. In this diagram, the relationships are represented by
arrows.

All the relationships in the Options.mdb database are one to
many. As you may be able to gather from the diagram, a one-to-
many relationship exists between the Stock and OptionContracts
tables. Clearly, a single stock can have many options contracts on it.
But in the opposite direction, it is not the same. A single option
contract can have only one underlying stock associated with it.

Earlier in the chapter, we briefly described a many-to-many
relationship between two tables. Although not represented in the
Options.mdb diagram, let’s consider a quick example. A single
option contract may be involved in many trades, but an individual
trade could have more than one option contract associated with it if
we assume spreads are included in a SpreadTrades table. In this
way, a single option contract could be related to several spread
trades, and a single spread trade could be related to several option
contracts.

Relational Databases 195

Team-LRN

SUMMARY

When doing financial modeling and certainly when building
production trading and risk management systems, relational
databases are superior to Excel as a way to store and manage data.

F I G U R E 11.1

196 Database Programming

Team-LRN

The database field has its own language that we must learn before
we can begin creating databases and interacting with them. In this
chapter, we looked at and defined several database terms.
Furthermore, creating new relational databases necessitates the
use of a design methodology. We very briefly reviewed the seven
steps of a well-known methodology.

There are three Access databases included on the CDwith this
book—Finance.mdb, DirtyFinance.mdb, and Options.mdb. Wewill
be building VB.NET Windows applications in later chapters that
access them.

Relational Databases 197

Team-LRN

PROBLEMS

1. What are operational and analytical databases?
2. What is SQL?
3. Describe tables, rows, and columns.
4. What are relationships and how are they created? Describe

the three types of relationships.
5. What is the process to go through to design a relational

database?

198 Database Programming

Team-LRN

PROJECT 11.1

Assuming you have MS Access, create a simple relational database
called Futures.mdb in MS Access. This database should consist of
two tables named Futures and FuturesTrades. The Futures table
should have columns named FuturesSymbol, Expiration, Bid, and
Ask. The FuturesTrades table should have columns named
TradeID, TradeDate, TradeTime, FuturesSymbol, Quantity, and
Price.

In Access, open a blank Access database. Next, under Objects
click on Tables and then on New. In Design View, enter the column
names for the Futures table. On the FuturesSymbol field, right-click
and select Primary Key. Close the Design View window and name
this table Futures.

F I G U R E 11.2

Relational Databases 199

Team-LRN

Next click on New again. In Design View, enter the column
names for the FuturesTrades table. Set TradeID as the primary key.
Close the Design View window and name this table FuturesTrades.

Under the Tools menu bar item, select Relationships. Add
both the Futures and FuturesTrades tables.

On the menu bar, select Relationships and Edit Relationships.
In the Edit Relationships window, click on Create New. Add a
relationship between the FuturesSymbol field in the Futures table
and the FuturesSymbol field in the FuturesTrades table as shown in
Figure 11.2.

Back in the Edit Relationships window, click on Enforce
Referential Integrity and Create. You should now see the one-to-
many relationship shown graphically in the Relationships
window—see Figure 11.3.

Now try adding some hypothetical data to the tables by
opening the table.

PROJECT 11.2

Design a relational database to hold bond trading data and create it
in MS Access. Your database should contain at least two tables
related to each other in a one-to-many way.

F I G U R E 11.3

200 Database Programming

Team-LRN

C H A P T E R 12

ADO.NET

ADO.NET is an application programming interface used to
interact with databases in VB.NET programming code using
ActiveX Data Objects (ADO). ADO is a proprietary set of Microsoft
objects that allows developers to access relational and nonrelational
databases, including MS Access, Sybase, MS SQL Server, Informix,
and Oracle among others. So if we need to write a program that
provides a connection to a database, we can use ADO objects in our
application to perform database transactions. These objects are
found in the data and XML namespaces, as for example:

Namespace Description

System.Data ADO.NET classes, including the DataSet class
System.Data.Common Classes for database access
System.Data.OleDb Classes for connection to OleDb-compatible databases
System.Data.SqlClient Classes for connection to SQL Server 7.0 databases
System.Data.SqlTypes Classes for SQL Server 7.0 data types
System.XML Classes for XML message creation and parsing

ADO.NET is part of Microsoft’s overall data access strategy
for universal data access, which attempts to permit connectivity to
the vast array of existing and future data sources. In order for
universal data access to work, Microsoft and several database
companies provide interfaces between their databases and
Microsoft’s OleDb objects. OleDb (Object Linking and Embedding
Databases) objects enable connection to just about any data source,
whereas SqlClient objects enable optimized interaction with MS
SQL Server databases. Furthermore, ADO supports the use of data-
aware components, such as DataGrids in Visual Basic.NET, which

201

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

allow us to see the data from the database. So we can, if need be,
look at the data in a running Windows application.

ADO is a complex technology, and mastering it can take a
tremendous amount of effort. In fact, several good books have been
written about this subject alone. The remainder of this chapter will
focus on a discussion of the ADO.NETclasses and their uses, which
enable us to open a connection to a data source, get data from it,
and put the data into an in-memory cache of records called a
DataSet. Then we can close the connection to the database. In a
nutshell, ADO allows us to connect to and disconnect from a
database, get data from a database, and view and manipulate data,
including making changes to the data itself.

The model just mentioned is the one we will use in all
examples in this chapter. But there is another model. The
alternative is to perform operations or calculations on the database
directly using a data command object, OleDbCommand, with an
SQL statement. Direct database interaction in this manner uses less
overhead since it bypasses storage of data in a data set, which of
course requires memory. We will examine briefly this alternative
model in the following chapter.

The main advantage of the DataSet model, though, is that
DataSet allows us to work with multiple tables, from multiple data
sources such as databases, Excel spreadsheets, or XML files, and
use them in multiple applications. The long and the short of it is
that the advantages of the DataSet methodology outweigh the
disadvantage of increased memory usage.

The following sections will introduce you to some ADO
objects that have evolved since previous versions of Visual Basic
and some that are new.

CONNECTIONS

To interact with a database, we first need to establish a persistent
connection to it. A persistent connection is one that will stay open
until it is explicitly closed. VB.NET supports many different types
of connection classes in the OleDb and SqlClient namespaces. We
will use the OleDbConnection class.

202 Database Programming

Team-LRN

DATAADAPTER

A DataAdapter is the object that communicates with the database
via an SQL statement to get data and put it in something called a
DataSet. Then, if need be, the DataAdapter can send updated data
back to the database to make changes in the data, based on
operations performed while the DataSet held the data. In an effort
to make multitiered applications more efficient, data processing is
turning to a message-based approach that revolves around chunks
of information. At the center of this approach is the DataAdapter,
which acts as a conduit to get and send data between a DataSet and
a database. It accomplishes this by means of SQL queries and
commands made against the database. In Chapter 13 we will
discuss SQL in depth. Here are the important properties and
methods of the OleDbDataAdapter class, which we will use:

Public Constructor Description

New() Initializes a new instance of the class

Public Properties Description

DeleteCommand Gets or sets an SQL statement for deleting records from the
database

InsertCommand Gets or sets an SQL statement used to insert new records into
the database

SelectCommand Gets or sets an SQL statement used to select records in the
database

UpdateCommand Gets or sets an SQL statement used to update records in the
database

Public Methods Description

Fill Adds rows from a data source to a specified DataSet
FillSchema Adds a DataTable to a DataSet so that the schema matches

schema of the data source
Update Calls the INSERT, UPDATE, or DELETE statements for each row

in the DataSet

DATASET

A DataSet can be thought of as in-memory representation of a
relational database, complete with tables, columns, rows, and
relations. DataSets can be used then for storing, remoting, and

ADO.NET 203

Team-LRN

programming against flat, XML, and relational data. The important
distinction between this evolved stage of ADO.NET and previous
Microsoft data architectures is that a DataSet is separate and
distinct from any data sources. For this reason, DataSet functions
are stand-alone entities that know nothing about the source or
destination of the data within it. The DataSet does not interact
directly with the database and is only a cache of data, with
database-like structures such as tables, columns, and relationships
within it. This allows us to work with a programming model that is
always consistent, regardless of where the source data resides. Data
coming from a database, an XML file, code, or user input can all be
placed into a DataSet object. Then as changes are made to the
DataSet, they can be tracked and verified before updating the
source data. This DataSet is then used by a DataAdapter to update
the original data source.

The DataSet class, the related Columns collection of
DataColumns, the Rows collection of DataRows, and Constraints
classes are all defined in the System.Data namespace.

Here are the important public properties and methods of the
DataSet class:

Public Constructor Description

New Initializes an instance of the class

Public Properties Description

HasErrors Indicates whether there are errors in any of the records, or
rows, of the DataSet

Tables Gets the collection of tables within the DataSet

Public Methods Description

Clear Clears all data from the DataSet
Clone Copies the structure of the DataSet, but not the data
Copy Copies the structure and the data of the DataSet
GetChanges Creates a second DataSet that contains the changes
GetXML Gets an XML representation of the DataSet
Merge Merges the DataSet with another DataSet
ReadXML Reads data and schema from XML into the DataSet
ReadXMLSchema Reads an XML schema in the DataSet
Reset Resets the DataSet to its original state
WriteXML Writes XML data from the DataSet
WriteXMLschema Writes the XML schema from the DataSet

204 Database Programming

Team-LRN

DataSets are made up primarily of a collection of DataTables
and DataRelations. DataTables are in turn made up of collections of
columns, rows, and constraints. Actual data is then contained in the
Rows collection of DataRow objects. As in a relational database,
constraints maintain the data, entity, and relational integrity of the
data through the ForeignKeyConstraints, the UniqueConstraints,
and the PrimaryKey. The DataRelation collection acts as an
interface between related rows in different tables, as shown here:

Data Set Object

DataTable collection

DataRelation collection

Columns (DataColumnCollection)
DataColumns

Rows (DataRowCollection)

9>>>>>>>>=
>>>>>>>>;

DataRows
Constraints

Constraint

As we describe the pieces of the DataSet puzzle, we will also
show you the code snippets to build a DataSet with a DataTable. In
more situations than not, the DataAdapter will do these things
automatically, but an understanding of how a DataSet is
constructed is absolutely necessary to higher-level programming.

Step 1 Create a new Windows application named
DataSetExample. On the form, place a label. All
the code we add to the program will be in the
Form1_Load event. Add the code shown here to
create a DataSet:

Private Sub Form1_Load(ByVal sender As ...)Handles MyBase.Load

Dim myDataSet As New DataSet()

‘ Add new code in here later.

End Sub

DATATABLE

Because DataTables actually hold the data in a DataSet, DataTables
are the main topic in any discussion of ADO.NET. A DataTable
holds a Columns collection, which defines the table’s schema; a
Rows collection, which contains the records in DataRow objects;

ADO.NET 205

Team-LRN

and Constraints, which ensure the integrity of the data along with
the PrimaryKey of the DataTable. We can add a DataTable to a
DataSet’s collection of tables using the overloaded Add method:

Public Methods Description

Tables.Add Creates a DataTable in the DataSet
Tables. Add(myName) Creates a DataTable in the DataSet with a name
Tables.Add(myDataTable) Adds a DataTable to the DataSet

Here are the important properties, methods, and events of a
DataTable:

Public Constructor Description

New Creates a DataTable
New(TableName) Creates a DataTable with the name

Public Properties Description

Columns Returns a reference to the DataColumnCollection, a collection of
DataColumn objects

Constraints The Constraints collection
DataSet The DataSet to which the DataTable belongs
HasErrors Indicates whether there are errors in any of the DataTable’s

DataRows
PrimaryKey The primary key of the DataTable
Rows Returns a reference to the DataRowCollection, a collection of

DataRow objects
TableName The name of the DataTable within the DataSet

Public Methods Description

AcceptChanges Changes all the DataRows
Clear Deletes all DataRow objects from the DataTable
Clone Copies the schema of the DataTable, but not the data
Compute Performs an operation on the DataTable
Copy Copies the schema and the data of the DataTable
ImportRow Copies a DataRow into a DataTable
NewRow Creates a row with the schema of the DataTable as defined by the

DataColumnCollection
Select Returns an array of DataRow objects that match a specified

criterion

Public Events Description

ColumnChanged Fires after a DataColumn has been changed
RowChanged Fires after a DataRow has been changed
RowDeleted Fires after a DataRow has been deleted

206 Database Programming

Team-LRN

Step 2 Let’s create a DataTable and add it to the DataSet.

Dim dtIBMdata As New DataTable("IBMdata")
myDataSet.Tables.Add(dtIBMdata)

COLUMNS, DATACOLUMNCOLLECTIONS,
AND DATACOLUMNS

The DataTable’s Columns property returns a reference to a
DataColumnCollection, an object that holds a collection of
DataColumn objects and defines the schema of the table. Usually
the DataColumnCollection is defined automatically by a DataA-
dapter’s Fill method, and we can then access the DataColumnCol-
lection through the DataTable’s Columns property. Because the
DataColumnCollection inherits from the CollectionBase class, it
uses the Add, Remove, Item, and Count methods to (respectively)
insert, delete, get a specified DataColumn from, and count the
number of DataColumn objects within it. As we will see, in some
cases we may want to define the schema ourselves using the
DataTable’s Columns properties and methods. We will discuss
Collection objects in greater detail in Chapter 14.

We can add DataColumns to the DataColumnCollection using
the Columns.Add method as follows:

Public Method Description

Columns.Add(DataColumn) Adds a DataColumn to a DataTable

Here are the important properties of DataColumns:

Public Properties Description

New Creates a DataColumn
New(ColumnName) Creates a DataColumn with a name
New(ColumnName,

DataType)
Creates a DataColumn with a name and a data type

Public Properties Description

AllowDbNull Specifies whether a column can be empty
AutoIncrement Specifies whether the system will increment the value of the

column automatically

ADO.NET 207

Team-LRN

Public Properties Description

Caption The name of the column if different from ColumnName
ColumnName The name of the column
DataType The type of data the DataColumn can hold
DefaultValue The default value of elements in the DataColumn
ReadOnly Specifies whether elements in the DataColumn can be

changed
Unique Specifies whether each element in the DataColumn must be

unique

Step 3 Let’s create a DataColumn and add it to the
DataTable.

Dim colClose = New DataColumn("ClosePrice")
dtIBMdata.Columns.Add(colClose)

ROWS, DATAROWCOLLECTIONS,
AND DATAROWS

The Rows property of a DataTable returns a reference to a
DataRowCollection, a collection that contains the data in DataRow
objects. Because the DataRowCollection inherits from the Collec-
tion class, it uses the Add, Remove, Item, and Count methods to
(respectively) insert, delete, get a specified DataRow from, and
count the number of DataColumn objects within it. So we can add
DataRows to the DataTable through the Rows property using the
Rows.Add methods as follows:

Public Methods Description

Rows.Add(DataRow) Adds a DataRow to a DataTable
Rows.Add(datavalues()) Adds a DataRow to a DataTable and sets the respective

DataColumn values according to the datavalues array

Here are the important properties and methods of a DataRow
object:

Public Properties Description

HasErrors Indicates whether there are errors in the DataRow
Item Specifies a DataColumn within the DataRow
ItemArray An array of all the values of the DataColumns in the DataRow
Table The DataTable to which the DataRow belongs

208 Database Programming

Team-LRN

Public Methods Description

AcceptChanges Makes all changes to a DataRow
BeginEdit Starts an editing operation
CancelEdit Stops an editing operation
Delete Deletes a DataRow
EndEdit Finishes an editing operation
IsNull Specifies whether a DataColumn within the DataRow has

a null value

Step 4 Now let’s create a DataRow and add it to the
DataTable.

Dim rowData As DataRow = dtIBMdata.NewRow()
dtIBMdata.Rows.Add(rowData)

We can define the value of this “cell” or any other “cell” in the
table this way:

dtIBMdata.Rows(0).Item("ClosePrice") = 65.34

In the case where the DataTable is created by the DataAdapter,
we can reference a specific cell this way:

Label1.Text = myDataSet.Tables("IBMdata").Rows(0).Item("ClosePrice")

See Figure 12.1.

F I G U R E 12.1

ADO.NET 209

Team-LRN

CONNECTING TO A DATABASE

As mentioned earlier, for the purposes of this book, we will use an
OleDbConnection to interface with databases. The System.Data.
OleDb namespace contains several classes we can use to access
OleDb-compatible data sources, such as MS Access databases.

To connect to a database, we will use an OleDbConnection
object, which represents a unique connection to a data source. An
instance of this class specifies the connection provider and the
name and path of the database to which our application will
connect.

We will use the OleDbDataAdapter class to hold an SQL
statement and the connection upon which it will be executed. After
we have declared an OleDbDataAdapter object, we can create a
DataSet object in which to place the data the DataAdapter returns
to us. Unlike the DataSet example shown previously, we will not
have to construct the DataSet’s DataTable ourselves. Rather, the
DataAdapter will create the DataSet’s schema for us.

Step 1 The database to which we will connect will be the
Finance.mdb MS Access database, which can be
found on the CD. Create a copy of the Finance.mdb
database in the ModelingFM folder on your C:\ drive
so that the absolute path to the database is
C:\ModelingFM\Finance.mdb.

Step 2 In VB.NET, open a new Windows application called
ADOExample.

Step 3 On your Form1, add a Button, a Label, and a
DataGrid. You can leave the names to their defaults.

Step 4 In the Form1 code window, all the way at the top,
above the line of code that reads Public Class Form1,
type the statement:

Imports System.Data.OleDb

Step 5 In the Button1_Click event, add the following code:

Private Sub Button1_Click(ByVal sender As ...) Handles Button1.Click

Dim myConnect As New OleDbConnection("Provider=Microsoft.Jet _

.OLEDB.4.0;Data Source=C:\ModelingFM\Finance.mdb")

Dim myAdapter As New OleDbDataAdapter("select * from AXP", myConnect)

Dim myDataSet As New DataSet()

myConnect.Open()

210 Database Programming

Team-LRN

myAdapter.Fill(myDataSet, "AXPdata")

myConnect.Close()

DataGrid1.DataSource = myDataSet

DataGrid1.DataMember = "AXPdata"

Label1.Text = myDataSet.Tables("AXPdata").Rows(0).Item("ClosePrice")

End Sub

Step 6 Run your program (see Figure 12.2).

In the above code example, the first line creates an
OleDbConnection object called myConnect and supplies the
connection string. In this case the Microsoft JET driver is specified
as well as the local path for the MS Access database known as
Finance.mdb. With the connection string specified, a new instance
of the OleDbConnection is created. Notice that the connection
string is passed in the constructor, the New() method, of the
OleDbConnection object. A few lines down, the myConnect.Open()
method is called. At that point, assuming no errors and that the
database actually exists, the database connection is made.

The second line of code creates an OleDbDataAdapter object.
Two arguments are passed to its constructor: a string containing an

F I G U R E 12.2

ADO.NET 211

Team-LRN

SQL statement that indicates that we are selecting �, which means
all the columns, from the table named AXP, and the database
connection against which the SQL statement will be executed,
namely myConnect.

The third line of code in the example creates a DataSet object
called myDataSet.

Once our three objects are created and the connection is open,
we can execute the SQL statement by calling the myAdapter.Fill()
method of our OleDbDataAdapter object. This method takes two
arguments. The first argument is the DataSet that will hold all the
data returned by the SQL query. The second is a string value that
represents the name of the resulting DataTable. This name is an
arbitrary string that we supply. Once the data is in the DataSet, we
close the connection to the database using myConnect.Close().

At this point in the program, all the data from the table named
AXP in the database now exists in memory in myDataSet. We
display the data by telling DataGrid1 which DataSet, myDataSet,
and which DataMember, which is the DataTable that we arbitrarily
named AXPdata.

As in the DataSet example we looked at earlier in the chapter,
we can retrieve any specific element in the DataTable by
referencing its DataSet, its DataTable, its row, and its column. As
you can see, the DataAdapter constructed the DataSet with the
same schema that we manually created in the previous program.

Now that the data is in memory, we can perform mathematical
operations on it. In its current form, the data set consists of a date
column and open, high, low, close, and volume columns. Primarily
when doing quantitative research, we are interested in log returns
as opposed to actual prices. So the log returns must be calculated.
We can choose to pass a reference to the DataRowCollection
directly to a new function, or we may wish to create a one-
dimensional array of log returns first, which then can be used with
the functions discussed in Chapter 8. Let’s look at both methods.

Step 7 First let’s pass a reference to the DataRowCollection
to a new function called ColumnAverage(). Change
the last line of code to the following:

Label1.Text = ColumnAverage(myDataSet.Tables("AXPdata").Rows, 5)

212 Database Programming

Team-LRN

Step 8 Now add the definition of the ColumnAverage()
function:

Function ColumnAverage(ByRef myDataPoints As DataRowCollection, _

ByVal intCol As Integer) As Double

Dim dblTotRet As Double

Dim x As Integer

For x = 0 To myDataPoints.Count-1

dblTotRet += myDataPoints(x).Item(intCol)

Next x

Return dblTotRet / (x + 1)

End Function

Notice that the ColumnAverage() function accepts a reference
to a DataRowCollection and an integer specifying the column to be
averaged. In this case, we are averaging column 5, the volume
column, and so our program will print into the label the average
volume. The calling statement uses the Rows property, which
returns a reference to a DataRowCollection, as mentioned earlier.

Step 9 Run the program (see Figure 12.3).

F I G U R E 12.3

ADO.NET 213

Team-LRN

The alternative method is to create an array of log returns,
which can then be used with the statistical functions we looked at
previously.

Step 10 Add the following code to your Button1_Click
event:

Dim intLength As Integer = myDataSet.Tables("AXPdata").Rows.Count

Dim x%

Dim dblAXPreturns As Double() = New Double(intLength - 2) {}

For x = 1 To intLength - 1

dblAXPreturns(x - 1) = _

Math.Log(myDataSet.Tables("AXPdata").Rows(x).Item("ClosePrice") / _

myDataSet.Tables("AXPdata").Rows(x - 1).Item("ClosePrice"))

Next x

Label1.Text = Average(dblAXPreturns)

Step 11 Now add the code for the Average() function that we
looked at in Chapter 8. You can either type it or paste
it in from the file on the CD.

Public Function Average(ByRef Returns As Double()) As Double

Dim dblTotRet As Double

Dim x As Integer

F I G U R E 12.4

214 Database Programming

Team-LRN

Dim dblLength# = UBound(Returns, 1)

For x = 0 To dblLength

dblTotRet += Returns(x)

Next x

Return dblTotRet / (dblLength + 1)

End Function

Step 12 Run the program (see Figure 12.4).

In the following chapter, we will learn how to add columns to
tables to allow us to add this calculated data back to a database
itself.

SUMMARY

In this chapter we briefly discussed the ADO.NET architecture and
some of the OleDb objects for connecting to databases. Specifically,
we looked at a model for database interaction that includes the use
of OleDbConnection objects, OleDbDataAdapters, and DataSets.
DataSets contain DataTables, which in turn contain collections of
DataColumns and DataRows. Understanding the structure of a
DataSet allows us to access the data within the DataSet.

ADO.NET 215

Team-LRN

PROBLEMS

1. What is an OleDbConnection object? What is an OleDb-
DataAdapter?

2. Describe the model we use to interact with a database.
3. Describe the structure of a DataSet object.
4. What code can we use to access a specific item of data

within a DataSet?
5. Write the lines of code necessary to add a DataRow to a

DataTable named myDataTable.

216 Database Programming

Team-LRN

PROJECT 12.1

The Finance.mdb database contains several tables. Create a
Windows application that gets all the columns from the IBM
table and displays them in a DataGrid.

Further, your program should allow the user to enter an index
number corresponding to a specific row in the DataTable. In labels,
print out the date, open, high, low, and closing prices and the
volume associated with this index.

PROJECT 12.2

Create a Windows application that connects to the SPY table in the
Finance.mdb database and downloads all the columns into a
DataSet. Create a one-dimensional array and populate it with the
daily log returns from the DataSet. Add the function definitions for
the four moments of a distribution: Average(), Variance(), Skew(),
and Kurtosis(). Print out these values in two labels.

What can we say about the distribution of returns on the SPY
over the DataSet from the values you have calculated?

ADO.NET 217

Team-LRN

This page intentionally left blank.

Team-LRN

C H A P T E R 13

Structured Query
Language

Structured Query Language is a computer language for
communication and interaction with databases. SQL was created
to be a single syntax to extract and manipulate data from disparate
database systems. So in theory the same SQL queries written for an
Oracle database will work on a Sybase database or an Access
database and so on. However, database vendors have also
developed their own versions of SQL such as Transact-SQL and
Oracle’s PL/SQL. This chapter will focus on writing standard SQL
and will not use any vendor-specific SQL code.

SQL is the engine for communicating with the databases from
programming code. The communicating parties are typically a
“front-end” application or program, in our case a VB.NET
application that sends an SQL statement across a connection via
an OleDbDataAdapter, and a “back-end” data source that holds the
data. That statement, the SQL code, contains instructions to read or
change the data within the database or to manipulate the database
itself in some other way. The universal rules of SQL have been
established by ANSI, the American National Standards Institute,
and therefore are open, meaning that SQL is not owned or
controlled by any single company.

The strength of SQL is its universal acceptance by database
vendors, and while there has been a lot of talk and marketing about

219

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

“write once, run anywhere” languages, for database programmers
it is really true. Understanding SQL is the ticket to “learn once,
profit anywhere.”

SQL is not a programming language in the way that VB.NET
is. It is a pure language. There is no development environment built
into SQL. It does not have user forms like Windows applications.
SQL is a nonprocedural programming language consisting of only
about 100 specialized words that we can combine into statements.
We can embed these statements into VB.NET programs to perform
everything from simple data retrieval to high-level operations on
databases.

The SQL statements that we may most often be concerned
with when developing quantitative trading or risk management
systems are those that retrieve data, called queries. However, we
will at times also need to write data to a database or delete data
from a database. For example, since historical data is almost never
perfectly clean, we may need to remove or change bad quotes,
which requires changing data in the database. Also we may need to
calculate values, such as log returns, that are not included in the
raw data and that then must be saved back to a database. So
although SQL has many capabilities, we will need to at least learn
how to read data, create new fields and records to hold new
calculated values, and change or delete existing data.

By the end of this chapter, you should have a good
understanding of the syntax of SQL. In addition, you should be
able to write SQL code to perform basic queries. Our experience is
that understanding the basics of SQL is much easier than mastering
all the intricacies of it. In other words, it is relatively easy to get
good at SQL, but very difficult to get great at it.

We are confident that SQL is a language in which you can
become fairly proficient in a relatively short amount of time. As we
mentioned, SQL consists of only about 100 or so words, and SQL
statements are simply groups of those words logically arranged to
pull specific data from the data source or manipulate the data in the
data source. These types of SQL statements are referred to as data
manipulation language (DML). Also, however, SQL can be used to
actually manipulate the database itself. These SQL statements are
called data definition language (DDL). In this chapter, we will get a
chance to look at both DML and DDL.

220 Database Programming

Team-LRN

DATA MANIPULATION LANGUAGE

We use DML to work with the actual data held within databases.

The SELECT Statement

Reading data is the most common task we want to perform against
a database. A SELECT statement queries the database and retrieves
selected data that matches the criteria that we specify. The SELECT
statement has five main clauses, although a FROM clause is the
only required one. Each of the clauses has a wide array of options
and parameters. Here we will show the general structure of a
SELECT statement with clauses. However, each of them will be
covered in more detail later in the chapter.

SELECT [ALL | DISTINCT] column1,column2
FROM table1,table2
[WHERE "conditions"]
[GROUP BY "column-list"]
[HAVING "conditions"]
[ORDER BY "column-list" [ASC | DESC]]

Again, in the SELECT syntax, only SELECT and the FROM
clause are required. In English, a SELECT statement means that we
want to select columns from a table. When selecting multiple
columns, a comma must delimit each of them except for the last
column. Also be aware that as with VB.NET, SQL is not case-
sensitive. Uppercase or lowercase letters will do just fine. Be aware
too that most, but not all, databases require the SQL statement to be
terminated by a semicolon.

Before we get too in-depth, let’s create a VB.NET program to
test out the SQL statements we look at as we go along.

Step 1 Create a new Windows application named
SQLexample.

Step 2 To Form1 add a text box, a button, and a data grid.
Step 3 In the Form1 code window add the following code.

Most of this code should look very familiar. It follows
closely the example presented in the previous
chapter. This time, however, we will use the
Options.mdb database.

Structured Query Language 221

Team-LRN

Imports System.Data.OleDb

Public Class Form1

Inherits System.Windows.Forms.Form

Windows Form Designer generated code

Dim myConnect As New OleDbConnection("Provider=Microsoft.Jet.OLEDB. _

4.0;DataSource=C:\ModelingFM\Options.mdb")

Dim myAdapter As OleDbDataAdapter

Dim myDataSet As DataSet

Private Sub Button1_Click(ByVal sender As ...) Handles Button1.Click

Try

myAdapter = New OleDbDataAdapter(TextBox1.Text, myConnect)

myConnect.Open()

myDataSet = New DataSet()

myAdapter.Fill(myDataSet, "myData")

DataGrid1.DataSource = myDataSet

DataGrid1.DataMember = "myData"

Catch

MsgBox("Please enter a valid SQL statement.")

Finally

myConnect.Close()

End Try

End Sub

End Class

This program will allow the user to provide an SQL statement
during run time. Furthermore, we will be able to test out several
SQL statements without having to rerun the program. Also we
have included a Try. . .Catch block so the program won’t crash if
you make a mistake in the SQL statement.

Step 4 Run the program and enter into the text box the
simple SQL statement shown below. See also Figure
13.1.

SELECT OptionSymbol,StockSymbol,Year,Month,Strike,Bid,Ask,OpenInt

FROM OptionContracts;

This SQL statement will work in any programming language
or development environment, including, as you can see, VB.NET.
Note in Figure 13.1 that the columns are displayed in the order that
they appear in the SELECT statement. If all columns from a table
are needed to be part of the result set, we do not need to explicitly
specify them. Rather, in the case where all columns are to be
selected, we can use the � symbol. As we saw in the previous
chapter’s example, the resulting SQL statement would look like
this:

SELECT * FROM OptionContracts;

222 Database Programming

Team-LRN

For now, leave your SQLexample Windows application
running. You can test out the SQL statements as you read through
the rest of the chapter.

The WHERE Clause

The previous example retrieved a result set that included all the
rows in the table from the specified columns. Usually, however,
some rows need to be filtered out. Most queries we will write will
not retrieve all the rows from a table, but only a subset of them. This
is where the WHERE clause comes in. The WHERE clause filters
out rows from a table according to some condition. For example, as
in the Finance.mdb database example, if we want to look at the
price data for only the year 1994, we could achieve this by using a
comparison operator in theWHERE statement. Here is a list of SQL
comparison operators:

Comparison Operator Description

, Contents of the field are less than the value
,¼ Contents of the field are less than or equal to the value
. Contents of the field are greater than the value
.¼ Contents of the field are greater than or equal to the value
¼ Contents of the field are equal to the value
,. Contents of the field are not equal to the value
BETWEEN Contents of the field fall between a range of values
LIKE Contents of the field match a certain pattern
IN Contents of the field match one of a number of criteria

F I G U R E 13.1

Structured Query Language 223

Team-LRN

If we are interested in only the option contracts with open
interest greater than 1000, our SQL would look like this:

SELECT * FROM OptionContracts WHERE OpenInt > 1000;

Try this out in your SQLexample application. The WHERE
clause can also have multiple conditions using AND or OR. If we
want to see all contracts where open interest is over 1000 and the
bid is greater than 0, it would look like this:

SELECT * FROM OptionContracts WHERE OpenInt > 1000 AND Bid > 0;

The Options.mdb database does not have any string-type
fields. If we need to build a WHERE clause for such a field, MS
Access requires that we use single quotes for string comparison like
this:

SELECT * FROM OptionContracts WHERE StockSymbol = ’IBM’;

Date comparison requires the use of the pound sign, #. For
example, if we want to see all the options trades done in February
2003, we would use this SQL statement:

SELECT * FROM OptionTrades

WHERE TradeDateTime >= #2/01/2003# AND TradeDateTime <= #2/28/2003#;

The ORDER BY Clause

We can sort our result set with the ORDER BY clause. ORDER BY is
an optional clause that allows us to display the results of our query
in a sorted order, either ascending or descending, based on the
columns we specify to order by. Here is an example:

SELECT * FROM OptionContracts
WHERE StockSymbol = ’MSFT’ ORDER BY OpenInt;

This statement selects all the MSFT option contracts and orders the
data from the lowest open interest to the highest.

To view the data in descending order, we simply add DESC to
the end, as shown here:

SELECT * FROM OptionContracts
WHERE StockSymbol = ’MSFT’ ORDER BY OpenInt DESC;

224 Database Programming

Team-LRN

If we need to order based on multiple columns, we must
separate the columns with commas:

SELECT * FROM OptionContracts

WHERE StockSymbol = ’MSFT’ ORDER BY OpenInt DESC, Strike;

Notice that the contracts that have the same open interest are now
listed in order of strike price. Also the DESC applies only to the
OpenInt. Strike is sorted with the default ASC order.

The LIKE Clause

We have looked at the comparison operators that can be used in a
WHERE clause, and most of them are self-explanatory and do not
warrant further discussion. The exception to this is the LIKE
operator.

So far we have learned how to find exact matches with SQL.
However, there may be times you need to search for partial strings.
SQL provides a LIKE operator for just this type of query.

The LIKE operator can only be used on fields that have one of
the string types set as their data type. LIKE cannot be used on dates
or numbers.

String comparison employs a wildcard sign, %, which can be
used to match any possible character that might appear before or
after the characters specified. For the sake of examples, we will use
the standard SQL % wildcard symbol. If you want to view all the
IBM option contracts with an 80 strike, you would write this
statement:

SELECT * FROM OptionContracts

WHERE StockSymbol = ’IBM’ AND OptionSymbol LIKE ’%P’;

The LIKE operator proves to be very useful as we write more
complex SQL statements since it enables us to find partial matches
without performing any complicated string manipulation. Keep in
mind, however, that the LIKE operator is not the most efficient SQL
command, and it will degrade overall performance. If we know the
exact string we are looking for in a field, then we should use the ¼

operator instead of LIKE. Adding an index on a field that is often
searched using the LIKE operator may increase system
performance.

Structured Query Language 225

Team-LRN

In addition to the % wildcard, there are two other important
wildcards used with the LIKE operator: the underscore (_) and the
square brackets ([]). Whereas the % wildcard is used to find a string
with any number of characters before and/or after the specified
characters, the underscore is used to limit the search to a single
leading or trailing character. A search of ‘%D%’ would return
MCDRE and IBMDP. Say, for example, we want to find all the April
calls for all the stocks. Omitting the IBM WHERE class and
changing the LIKE expression to ‘%D_’ would limit the return
values to just those calls with April expiration since we are now
looking for any option contract with a D as the second-to-last letter
in its symbol.

SELECT * FROM OptionContracts WHERE OptionSymbol LIKE ’%D_’;

Additionally, we can use the brackets ([]) to further limit
ranges of characters. With the brackets, we can specify particular
characters that must appear in a particular position. For instance, if
we were looking for April and May calls, then we need to modify
our criteria. We limit our search to option contracts that have either
D or E in the second-to-last position, and so we specify this by
putting these characters within brackets, in the appropriate place:

SELECT * FROM OptionContracts WHERE OptionSymbol LIKE ’%[DE]_’;

Keep in mind that the brackets may only contain single
characters, and so we cannot use them for lists of strings. This is the
biggest limitation to the bracket wildcard, but there are still a large
number of possibilities for expression searching in strings.

AGGREGATE SQL FUNCTIONS

So far the SQL that we have been using retrieves rows of data from
the database. But SQL can do a lot more. Among other things, SQL
has a few built-in functions that can tell us things about the data as
a whole. For example, what if we wanted to know what contract
has the largest open interest? How about the total number of trades
for a given month? As you can see, these numbers are not contained
within the columns of a table. Rather, they must be computed.

226 Database Programming

Team-LRN

ANSI SQL contains aggregate functions that can compute
simple information from the data in a database. The aggregate
functions in the table below are the official ones that are supported
by SQL-compliant databases. Specific RDBMSs may support
additional aggregate functions that are proprietary and also very
useful. We refer you to the documentation of your RDBMS for a list
of nonstandard aggregate methods.

Aggregate

Function Description

AVG Returns the average of the values in a column
COUNT Returns the total number of values in a column
COUNT(�) Returns the number of rows in a table
MAX Returns the largest value in a column
MIN Returns the smallest value in a column
SUM Returns the sum of the numeric values in a column

The SUM Function

Let’s begin by taking a look at the SUM function. It is used within a
SELECT statement and, predictably, returns the summation of a
series of values. In this example we will compute the total number
of shares traded in the month of January 2003.

SELECT SUM(Quantity) FROM StockTrades

WHERE TradeDateTime >= #1/1/2003# AND TradeDateTime <= #1/31/2003#;

Notice in Figure 13.2 that the result set only contains one row
of data. This is to be expected when using any of the SQL aggregate
functions. Also notice the name of the column. Since we asked SQL
to return an aggregate value, SQL named the column for us. When
this occurs, we say that an SQL-computed column is being used.

Of course, the column name Expr1000 is not descriptive of the
data it contains. Fortunately SQL column naming is simple. To
rename computed columns, use the AS modifier. The AS modifier
allows us to give meaningful names to any computed columns. If
we wanted to give a meaningful name—say, TotalShares—to the
computed column shown in Figure 13.2, we could write it as:

SELECT SUM(Quantity) AS TotalShares FROM StockTrades

WHERE TradeDateTime = #1/1/2003# AND TradeDateTime <= #1/31/2003#;

Structured Query Language 227

Team-LRN

The AVG/COUNT/MIN/MAX Functions

Predictably, these aggregate functions will return the average of the
data in a column, the lowest and highest values in a column, and
the count or number of elements in a column. If we want to obtain
the respective values for the month of January 2003, our SQL
statements would look as follows:

SELECT MIN(Quantity) FROM StockTrades

WHERE TradeDateTime >= #01/01/2003# AND TradeDateTime <= #1/31/2003#;

SELECT MAX(Quantity) FROM StockTrades

WHERE TradeDateTime >= #01/01/2003# AND TradeDateTime <= #1/31/2003#;

SELECT AVG(Quantity) FROM StockTrades

WHERE TradeDateTime >= #01/01/2003# AND TradeDateTime <= #1/31/2003#;

SELECT COUNT(*) FROM StockTrades

WHERE TradeDateTime >= #01/01/2003# AND TradeDateTime <= #1/31/2003#;

The DISTINCT Function

The SQL DISTINCT function is useful when only the first
occurrence of a desired series of data is needed. For example, if
we are interested in seeing a list of all the stocks that have been
traded, we would not care to see duplicates. That is, we may have
traded MSFT several times, and we don’t care to see it listed more
than once.We can filter out duplicates with the DISTINCT function.

F I G U R E 13.2

228 Database Programming

Team-LRN

SELECT DISTINCT(StockSymbol) FROM StockTrades
ORDER BY StockSymbol;

The GROUP BY Clause

As we have just seen, using aggregate functions such as SUM and
MIN will get us the appropriate value for all records or a group of
records. What if, however, we want to write an SQL statement that
would show the SUMs of the quantities traded of each individual
option symbol? The GROUP BY will return the results of aggregate
functions for a group of values.

SELECT OptionSymbol,SUM(Quantity) FROM OptionTrades GROUP BY OptionSymbol;

Notice in Figure 13.3 that option symbols are only displayed
when they have a value greater than zero. If, for example, the
summation of the quantity for AXPDZ were zero, it would not be
included in the result set. The GROUP BY clause can only be used
when selecting multiple columns from a table or tables and at least
one aggregate function appears in the SELECT statement.

When there are multiple columns beyond the one being
aggregated, we can GROUP BY all the other selected columns. For
example, if we want the total quantity for all option symbols by
BuySell, the SQL would look like the following:

F I G U R E 13.3

Structured Query Language 229

Team-LRN

SELECT OptionSymbol,BuySell,SUM(Quantity) FROM OptionTrades

GROUP BY OptionSymbol,BuySell;

Note that the above SQL has two columns in the GROUP BY clause.
Remember, if the column appears in the SELECT and the SELECT
has aggregate functions, the column must appear in a GROUP BY
clause.

The HAVING Clause

The HAVING clause is like a WHERE clause for groups. By
definition an SQL statement that uses a GROUP BY clause cannot
use a WHERE clause. We must use a HAVING clause instead. For
example, if we want to see only those option contracts that have
total quantities traded that are greater than or equal to 50, the SQL
statement would look like this:

SELECT OptionSymbol,SUM(Quantity) FROM OptionTrades
GROUP BY OptionSymbol HAVING SUM(Quantity) >= 50;

Figure 13.4 shows how the results would look on your screen.
The HAVING clause is reserved for aggregate functions and is

usually placed at the end of an SQL statement. Also, an SQL
statement with a HAVING clause may or may not necessarily

F I G U R E 13.4

230 Database Programming

Team-LRN

include the GROUP BY clause. The following SQL statement is
valid:

SELECT COUNT(OptionSymbol) FROM OptionTrades
HAVING SUM(Quantity) >= 50;

Aliasing

Anytime an aggregate function or computed column appears in an
SQL statement, SQL will rename it. As we ran the previous
examples, we noticed that the column headings looked something
like Expr1000. And we saw that with the AS modifier, the column
can be aliased with a name we supply. Using a column alias greatly
makes the output much more readable. We can also make
mathematical calculations in our SQL statements. The following
SQL uses a column alias to describe the (quantity � price) of a trade:

SELECT OptionSymbol,Price,Quantity,(Price * Quantity * 100) AS TradeCost

FROM OptionTrades;

If you run the above SQL, you will notice that the column title
is changed. The column holding the cost of each trade has been
aliased. Tables can also be aliased in a FROM clause. The following
example creates an alias named OT for the OptionTrades table:

SELECT * FROM OptionTrades OT;

This is convenient when you want to retrieve information from
two or more separate tables, an operation known as joining. The
advantage of using a table alias when joining will become apparent
over the course of the rest of the chapter.

Joining Tables

So far in our examples, we have retrieved data from only one table.
In many instances, however, we may need to retrieve data from two
or more tables. Anytime more than one table is being queried, they
must be joined. The Stock table and the OptionContracts table
above contain information about individual stocks and options
contracts on those stocks. In a real-world application, we may be
interested in returning data from both tables in a single SQL

Structured Query Language 231

Team-LRN

statement. To join these two tables we must first identify a column
in each table that contains the same data. In this example the
OptionContracts table contains a StockSymbol column that
matches the StockSymbol column in the Stock table.

The two tables can be joined on these StockSymbol columns,
although it is just a coincidence that both these tables are named the
same. In order to join tables, the data must match, but not
necessarily the column names. When creating an SQL SELECT
statement containing more than one column, we first specify the
join. Here is an example using table aliasing for readability:

SELECT * FROM Stock S, OptionContracts OC
WHERE S.StockSymbol = OC.StockSymbol;

In this example the join is performed within the WHERE clause.
The above SQL will return all columns for each table joined by the
stock symbol.

With the two tables joined, the SELECT and the WHERE
clause can now be modified. For example:

SELECT OC.OptionSymbol,OC.StockSymbol,OC.Bid,OC.Ask,S.DividendAmount

FROM Stock S, OptionContracts OC

WHERE S.StockSymbol = OC.StockSymbol AND S.StockSymbol = ’IBM’;

Figure 13.5 shows a screen shot of the results.

F I G U R E 13.5

232 Database Programming

Team-LRN

The UNION Keyword

A UNION is useful if you want to get data from two tables within
the same result set. For example, if we want to see the bid and ask
for INTC as well as the bids and asks for all the INTC options in one
result set, the SQL statement would read as follows:

Select StockSymbol,Bid,Ask FROM Stock
WHERE StockSymbol = ’IBM’

UNION
Select OptionSymbol,Bid,Ask FROM OptionContracts

WHERE StockSymbol = ’IBM’;

See Figure 13.6.
The data type for the columns in each SELECTstatement must

match for a UNION to work. This is not an issue in the above
example because each of the tables has identical column sets.

The INSERT Statement

Up to this point we have only queried the Options.mdb database
and looked at the results. We may, however, also be interested in
changing the data. In order to add, delete, or modify the data in the

F I G U R E 13.6

Structured Query Language 233

Team-LRN

Options.mdb database, we will first need to add some elements to
our SQLexample program.

Step 5 Add another button to your form.
Step 6 Add the following code to the Button2_Click event:

Private Sub Button2_Click(ByVal sender As ...) Handles Button2.Click

Try

myConnect.Open()

Dim command As New OleDbCommand(TextBox1.Text, myConnect)

command.ExecuteNonQuery()

Catch

MsgBox("Please enter a valid SQL statement.")

Finally

myConnect.Close()

End Try

End Sub

An OleDbCommand object is an SQL statement that we can
use to perform transactions against a database. We use the
ExecuteNonQuery() member method to execute UPDATE, INSERT,
and DELETE statements.

For the remainder of the chapter, SELECT statements should
be executed using the first button, and all other transactions should
be executed using this new, second button.

The SQL INSERT statement enables us to add data to a table in
a database. Here is an example showing the syntax for adding a
record to the OptionTrades table:

INSERT INTO OptionTrades

(TradeDateTime, OptionSymbol, BuySell, Price, Quantity, TradeStatus)

VALUES (#02/27/2003#,’IBMDP’,’B’,2.60,10,’F’);

You can verify that this data has been added to the table by writing
a simple SELECT statement.

Notice that all values for all columns have been supplied save
for the TradeID column, which is generated automatically. If a
value for a column is to be left blank, the keyword NULL could be
used to represent a blank column value. In regard to data types,
notice that strings are delimited by single quotes, numerical data
does not need single quotes, and dates are defined with pound
signs. As we have mentioned previously, each RDBMS is different,
and so you should look into the documentation of your system to
see how to define the data types. Whatever your RDBMS, the

234 Database Programming

Team-LRN

comma-delimited list of values must match the table structure
exactly in the number of attributes and the data type of each
attribute.

The UPDATE Statement

The SQL UPDATE clause is used to modify data in a database table
existing in one or several rows. The following SQL updates one row
in the stock table, the dividend amount for IBM:

UPDATE Stock SET DividendAmount = .55
WHERE StockSymbol = ’IBM’;

SQL does not limit us to updating only one column. The
following SQL statement updates both the dividend amount and
the dividend date columns in the stock table:

UPDATE Stock SET DividendAmount = .50,DividendDate = #03/18/2003#

WHERE StockSymbol = ’IBM’;

The update expression can be a constant, any computed value,
or even the result of a SELECT statement that returns a single row
and a single column. If the WHERE clause is omitted, then the
specified attribute is set to the same value in every row of the table.
We can also set multiple attribute values at the same time with a
comma-delimited list of attribute-equals-expression pairs.

The DELETE Statement

As its name implies, we use an SQL DELETE statement to remove
data from a table in a database. Like the UPDATE statement, either
single rows or multiple rows can be deleted. The following SQL
statement deletes one row of data from the StockTrades table:

DELETE FROM StockTrades
WHERE TradeID = 40;

The following SQL statement will delete all records from the
StockTrades table that represent trades before January 4, 2003:

DELETE FROM StockTrades
WHERE TradeDateTime < #01/04/2003#;

Structured Query Language 235

Team-LRN

If the WHERE clause is omitted, then every row of the table is
deleted, which of course should be done with great caution.

BEGIN, COMMIT, and ROLLBACK

Transaction commands such as INSERT, UPDATE, and DELETE
may also contain keywords such as BEGIN, COMMIT, and
ROLLBACK, depending upon the RDBMS you are using. For
example, to make your DML changes visible to the rest of the users
of the database, you may need to include a COMMIT. If you have
made an error in updating data and wish to restore your private
copy of the database to the way it was before you started, you may
be able to use the ROLLBACK keyword.

In particular, the COMMIT and ROLLBACK statements are
part of a very important and versatile Oracle capability to control
sequences of changes to a database. You should consult the
documentation of your particular RDMBS with regard to the use of
these keywords.

DATA DEFINITION LANGUAGE

We use DDL to create or modify the structure of tables in a
database. When we execute a DDL statement, it takes effect
immediately. Again, for all transactions, you should click Button2
to execute these nonqueries. You will be able to verify the results of
the SQL statements by creating simple SELECT statements and
executing a query with Button1 in your program.

Creating Views

A view is a saved, read-only SQL statement. Views are very useful
when you find yourself writing the same SQL statement over and
over again. Here is a sample SELECT statement to find all the IBM
option contracts with an 80 strike:

SELECT * FROM OptionContracts

WHERE StockSymbol = ’IBM’ AND OptionSymbol LIKE ’%P’;

236 Database Programming

Team-LRN

Although not overly complicated, the above SQL statement
is not overly simplistic either. Rather than typing it again and
again, we can create a VIEW. The syntax for creating a VIEW is as
follows:

CREATE VIEW IBM80s as SELECT * FROM OptionContracts

WHERE StockSymbol = ’IBM’ AND OptionSymbol LIKE ’%P’;

The above code creates a VIEW named IBM80s. Now to run it,
simply type in the following SQL statement:

SELECT * FROM IBM80s;

Views can be deleted as well using the DROP keyword.

DROP VIEW IBM80s;

Creating Tables

As you know by now, database tables are the basic structure in
which data is stored. In the examples we have used so far, the tables
have been preexisting. Oftentimes, however, we need to build a
table ourselves. While we are certainly able to build tables
ourselves with an RDBMS such as MS Access, we will cover the
SQL code to create tables in VB.NET.

As a review, tables contain rows and columns. Each row
represents one piece of data, called a record, and each column,
called a field, represents a component of that data. When we create
a table, we need to specify the column names as well as their data
types. Data types are usually database-specific but often can be
broken into integers, numerical values, strings, and Date/Time. The
following SQL statement builds a simple table named Trades:

CREATE TABLE Trades

(myInstr Char(4) NOT NULL,myPrice Numeric(8,2) NOT NULL,myTime Date _

NOT NULL);

The general syntax for the CREATE TABLE statement is as
follows:

CREATE TABLE TableName (Column1 DataType1 Null/Not Null, ...);

Structured Query Language 237

Team-LRN

The data types that you will use most frequently are the
VARCHAR2(n), a variable-length character field where n is its
maximum width; CHAR(n), a fixed-length character field of width
n; NUMERIC(w.d), where w is the total width of the field and d is
the number of places after the decimal point (omitting it produces
an integer); and DATE, which stores both date and time in a unique
internal format. NULL and NOT NULL indicate whether a specific
field may be left blank.

Tables can be dropped as well. When a table is dropped, all the
data it contains is lost.

DROP TABLE myTrades;

Altering Tables

We have already seen that the INSERT statement can be used to add
rows. Columns as well can be added to or removed from a table.
For example, if we want to add a column named Exchange to the
StockTrades table, we can use the ALTER TABLE statement. The
syntax is:

ALTER TABLE StockTrades ADD Exchange char(4);

As we have seen in the previous chapter, all tables must have a
primary key. We can use the ALTER TABLE statement to specify
TradeID in the Trades table we created previously.

ALTER TABLE Trades ADD PRIMARY KEY(TradeID);

Columns can be removed as well using the ALTER TABLE
statement.

ALTER TABLE StockTrades DROP Exchange;

SUMMARY

Over the course of this chapter, we have looked at SQL data
manipulation language and data definition language. While we
have certainly not covered all of SQL, you should now be fairly

238 Database Programming

Team-LRN

proficient at extracting and modifying data in a database as well as
changing the structure of tables within a database.

SQL consists of a limited number of SQL statements and
keywords, which can be arranged logically to perform transactions
against a database. While it is easy to get good at SQL, it is very
difficult to become an expert.

Structured Query Language 239

Team-LRN

PROBLEMS

1. What is SQL? What are DDL and DML?
2. What document should you consult to find out the specifics

of SQL transactions against your RDBMS?
3. What is an OleDbCommand object, and what is the

ExecuteNonQuery() method?
4. If we found corrupt data in a database, what statements

might we use to either correct it or get rid of it?
5. What is the syntax of CREATE TABLE?

240 Database Programming

Team-LRN

PROJECT 13.1

The Finance.mdb database contains price data. However, we very
often will be interested in a time series of log returns. Create a
VB.NET application that will modify the AXP table to include a
Returns column. Then make the calculations for the log returns and
populate the column.

PROJECT 13.2

Create a VB.NET application that will connect to the Finance.mdb
database and return the average volume for a user-defined stock
between any two user-defined dates.

Structured Query Language 241

Team-LRN

This page intentionally left blank.

Team-LRN

C H A P T E R 14

Introduction to
Data Structures

In Chapter 8 we looked at arrays, which are the simplest data
structures and have fixed sizes, although they can be redimen-
sioned. Visual Basic.NET offers several other more dynamic data
structures known as collection objects, which are convenient for
holding groups of objects such as, for example, a portfolio of
options. These data structures include the Collection object itself
and the objects found in the System.Collections namespace, the
most notable of which for right now are array lists, queues, stacks,
hash tables, and sorted lists. Oddly enough, the Collection class
itself is not located in the System.Collections namespace.

COLLECTION OBJECT

The Collection class allows us to store groups of objects of different
data types and to easily count, look up, and add or remove objects
within the collection using the Count and Item properties and the
Add and Remove methods of the Collection class. Furthermore we
can iterate through the elements in a collection using a For
Each. . .Next loop. Collections do not have fixed sizes, and memory
allocation is completely dynamic, and so in many cases they will be
a superior way of handling data compared with arrays.

As with arrays, it will be important to note the index of the
first element. Most often, the Collection objects we will use will be
1-based. That is, the index of the first element will be by default 1
and not zero as with arrays. Also Collection objects allow us to

243

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

access elements of the collection by either index or an optional
string key. As we will see later, other collection types allow only
numeric index references and may not have a key. Here are the
properties and methods associated with Collection objects:

Collection

Properties Description Example

Count Returns the number of objects in
the collection

dblNum ¼ myColl.Count

Item Returns a specific element of the
collection

dblObj ¼ myColl.Item(1) or
dblObj ¼ myColl.Item(strKey)

Collection

Methods Description Example

Add Adds an object to the collection myColl.Add(myObj)
Remove Removes an object from the

collection
myColl.Remove(2) or

myColl.Remove(strKey)

We have in fact already had some experience with Collection
objects. As you may recall, several of the ADO.NET objects we
looked at in Chapter 12, like DataRowCollections and DataCo-
lumnCollections, are Collection objects and as such inherit from the
CollectionBase class.
Here is an example using a Collection object.

Step 1 Create a new Windows application named Portfolio.
Step 2 In the Project menu item, select Add Class twice and

add two new classes. Into these class code modules,
paste in the code for the StockOption and CallOption
classes.

Step 3 Go back to the Form1 code window, and in the
Form1_Load event, add the code to create a
Collection object named MyPortfolio.

Dim MyPortfolio As New Collection()

Step 4 Next add the code to create a CallOption object called
myOption.

Dim myOption As New CallOption("IBMDP")

244 Database Programming

Team-LRN

Step 5 Add myOption to MyPortfolio.

MyPortfolio.Add(myOption)

Step 6 Now we can actually destroy myOption using the
Nothing keyword.

Whenwe assign Nothing to an object, the object reference no longer
refers to that object instance.

myOption = Nothing

Step 7 Still within the Form1_Load event, let’s create
another option and add it to MyPortfolio.

myOption = New CallOption("SUQEX")
MyPortfolio.Add(myOption)
myOption = Nothing

MyPortfolio now consists of two CallOption objects,
neither known by the name myOption, but rather by
their respective indexes within the MyPortfolio
collection.

Step 8 We could find the Strike price of the Sun
MicroSystems option (SUQEX) in the following way:

Label1.Text = MyPortfolio.Item(2).Strike

Or simply:

Label1.Text = MyPortfolio(2).Strike

as shown in Figure 14.1.

F I G U R E 14.1

Introduction to Data Structures 245

Team-LRN

CREATING A CUSTOMIZED COLLECTION
CLASS

In this simple example, we will create our own collection class that
will hold a portfolio of options. This new Collection class will allow
us only to add option objects. As in the previous example, any
object type, not just CallOptions, can be added to an instance of the
generic Collection class since it is not strongly typed. There is an
inherent advantage and a disadvantage with using this approach.
The advantage is that any object representing a tradable instrument
can be added to ourMyPortfolio object. However, the disadvantage
is that if we try to use a For Each CallOption In MyPortfolio. . .Next
loop to process a portfolio of options, an error will occur since one
element in MyPortfolio may be, for example, a GovtBond object.

In cases where we require a more robust collection, we can,
through inheritance from the CollectionBase class, create our own
Collection class and add our own functionality. The CollectionBase
class, found in the System.Collections.namespace, includes the
public Clear method, the Count property, and a protected property
called List that implements the IList interface. The methods and
properties—Add, Remove, and Item—require that we codify the
implementation, as you will see. Here are the important properties
and methods of the MustInherit CollectionBase class:

IList

Implementations Description

Count Returns the number of elements in the CollectionBase object

Public Methods Description

Clear Deletes all elements from the CollectionBase object
Equals Determines whether two objects in the CollectionBase are

equal
GetEnumerator Returns an enumerator that can iterate through the elements

of a CollectionBase
RemoveAt Deletes an element from the CollectionBase object at a

specified index

IList

Implementations Description

CopyTo Copies the elements of a CollectionBase to a one-dimensional
array

Add Adds an element at the end of the CollectionBase
Contains Determines whether a specified element is contained in a

CollectionBase

246 Database Programming

Team-LRN

IList

Implementations

Description

IndexOf Returns the index of the first occurrence of a specified
element in a CollectionBase

Insert Inserts an element into the CollectionBase at the specified
index

Remove Removes the first occurrence of a specified element from the
CollectionBase

In this example, we will create an OptionCollection that only
accepts CallOptions as opposed to any object. Then we will add
methods to buy, implementing IList.Add(), and sell, IList.Remo-
veAt(), CallOptions. Also we will need to implement the Item
property that returns the CallOption at a specified index. This
customized OptionCollection class will be zero-based.

Step 1 Start a new Windows application and name it
OptionCollection.

Step 2 In the same way as in the previous example, add the
code for the StockOption and CallOption classes.

Step 3 Now add a code module for a third class called
OptionCollection with the following code:

Public Class OptionCollection

Inherits System.Collections.CollectionBase

Public Sub Buy(ByVal myOption As CallOption)

List.Add(myOption)

End Sub

Public Sub Sell(ByVal myIndex As Integer)

List.RemoveAt(myIndex)

End Sub

Public ReadOnly Property Item(ByVal myIndex As Integer) As CallOption

Get

Return List.Item(myIndex)

End Get

End Property

End Class

Notice that the public Buy and Sell methods implement the
Add() and RemoveAt() methods and the Item property implements
the Item property of the List property of the parent CollectionBase
class.

Step 4 In the Form1_Load event, create an instance of the
OptionCollection class called MyOptionPortfolio.
Also create two CallOption objects
Dim myOptionPortfolio As NewOptionCollection()
Dim myFirstOption As New CallOption("IBMDP")
Dim mySecondOption As New CallOption("SUQEX")

Introduction to Data Structures 247

Team-LRN

Step 5 Add the two CallOptions to MyOptionPortfolio by
“buying” them.

myOptionPortfolio.Buy(myFirstOption)
myOptionPortfolio.Buy(mySecondOption)

Step 6 Sell the IBMDP option.

myOptionPortfolio.Sell(0)

Step 7 The SUQEX option is left in the portfolio as you can
see in Figure 14.2.

Label1.Text = myOptionPortfolio.Item(0).Strike

CLEANING DATA

Financial modeling and forecasting requires clean data for testing
and simulation. But almost no data is perfectly clean. In fact, we
should assume that all data is dirty. As a result, financial engineers
often spend large amounts of time cleaning data. It is very easy and
very common to underestimate the amount of time it will take to
clean data. Literally half the time required for high-quality analysis
can typically be spent cleaning data, and every analyst can recall
wasting countless hours of time testing and coding only to draw
bad conclusions due to dirty data. Failing to adequately consider
the impact of bad data can lead to the creation of bad models and,
worse, losses. Clean data can be profitable, but bad data will be
ruinous. As you might imagine, the quality of data purchased from
different data vendors can range from very clean to terribly dirty.

F I G U R E 14.2

248 Database Programming

Team-LRN

Using high-quality data almost always pays off even though it’s
more expensive. In any case, though, time spent finding good data
and giving it a good once-over is worth the effort and expense.

All data should be cleaned before use. But serious data
cleaning involves more than just visually scanning data in Excel
and updating bad records with good data. Rather, it requires that
we decompose and reassemble data. This takes time.

Data cleaning is a process that consists of first detection and
then correction of data errors and of updating the dirty data source
with clean data or preferably creating a new data source to hold the
entire cleaned data set. Maintaining the original dirty data source
in its original form allows us to go back if we make a mistake in our
cleaning algorithms and consequently further corrupt the data.

Another problem requiring data cleaning occurs when,
depending on the time interval we’re looking at, the data we
have is not in the individual ticks or bars we desire (bars being
fixed units of time with a date/time, an open, a high, a low, a close,
and maybe even a volume and/or open interest). We may, for
example, possess tick data and want to analyze bars of several
different durations—a minute in length, 5 minutes, a day, a week,
or a month. It is, of course, possible to convert raw tick data into a
series of bars by writing a simple VB.NET program to generate the
bar data and save it to a new database.

Let’s look at some of the common types of bad data we often
encounter in financial markets:

Type of

Bad Data Example

Bad quotes Tick of 23.54 should be 83.54
Missing data Blank field or data coded as “9999,” “NA,” or “0”
Bad dates 2/14/12997
Column-shifted data Value printed in an adjacent column
File corruption CD or floppy disk errors
Different data formats Data from different vendors may come in different formats

or table schemas

As we know, the use of a large amount of in-sample data will
produce more stable models and have less curve-fitting danger,
thereby increasing the probability of success out-of-sample and
consequently during implementation. Sophisticated models, such
as GARCH(1,1), are often more affected by bad data as compared
with simpler models.

Introduction to Data Structures 249

Team-LRN

Since many forecasting models, like GARCH, are extremely
sensitive to even a few bad data points, we should be sure to look at
means, medians, standard deviations, histograms, and minimum
and maximum values of our data. A good way to do this is to sort
through the data set to examine values outside an expected range.
Or we can run scans to highlight suspicious, missing, extraneous,
or illogical data points. Here are a few, but certainly not all,
methods often used to scan data:

Scanning for Bad Data

Intraperiod high tick less than closing price
Intraperiod low tick greater than opening price
Volume less than zero
Bars with wide high-low ranges relative to some previous time period
Closing deviance. Divide the absolute value of the difference between each closing price

and the previous closing price by the average of the preceding 20 absolute values
Data falling on weekends or holidays
Data with out-of-order dates or with duplicate bars

As mentioned, data cleaning has three components: auditing
data to find bad data or to highlight suspicious data, fixing bad
data, and applying the fix to the data set or preferably saving the
data to a new data source. The methods we choose to accomplish
these three tasks constitute a data transformation management
system (DTMS). The hope is that our DTMS will improve the
quality of the data as well as the success of our models. To review, a
DTMS should capture data from your data source, clean it, and
then save it back or create a new data source with the clean data.

As with any process, it pays to plan ahead when building a
DTMS. Before you begin, identify and categorize all the types of
errors you expect to encounter in your data, survey the available
techniques to address those different types of errors, and develop a
system to identify and resolve the errors.

Of course, as we mentioned, you should purchase data only
from reputable vendors who take data integrity seriously. Even so,
you should always scan and clean your data. It’s just that dealing
with quality vendors will nonetheless save time and improve
results.

250 Database Programming

Team-LRN

CREATING A DATA TRANSFORMATION
MANAGEMENT SYSTEM

Let’s look at an example of how to use a collection to build a simple
DTMS.

Step 1 Create a new Windows application called DTMS.
Step 2 In the Form1_Load event make an OleDbConnection

to the DirtyFinance.mdb database, retrieve all the
columns in the AXP table with an OleDbData-
Adapter and an SQL statement, and place the data
into myDataSet with the name “AXPdata.” Be sure to
declare myDataSet in the declarations section of the
Form1 class code window.

Imports System.Data.OleDb

Public Class Form1

Inherits System.Windows.Forms.Form

Dim myDataSet As New DataSet()

Private Sub Form1_Load(ByVal sender As ...) Handles MyBase.Load

Dim myConnect As New OleDbConnection("Provider=... ...\DirtyFinance.mdb")

Dim myAdapter As New OleDbDataAdapter("select * from AXP", myConnect)

myConnect.Open()

myAdapter.Fill(myDataSet, "AXPdata")

myConnect.Close()

End Sub

At this point, you may notice a particularly advantageous
situation. The AXP price data is now already held in a collection,
namely a DataRowCollection. So we can, without any additional
machinations, loop through the collection’s elements, which are
DataRow objects, and search for bad data. We prefer, of course, to
contain individual data-cleaning algorithms in separate procedures
or objects. Then we can simply pass a reference to the collection as
an input argument to the procedure and commence cleaning. In the
AXPdata DataTable, let’s search for intraday high prices that are
less than the closing price.

Step 3 Create a subroutine called CleanHighLessThanLow()
that accepts as an input argument a reference to a

Introduction to Data Structures 251

Team-LRN

DataRowCollection object. This subroutine should
loop through the element of a collection and find
instances where the intraday high is less than the
close.

As we discussed in Chapter 11, the DirtyFinance.mdb Access
database contains dirty data. For simplicity, your subroutine
should, upon finding a dirty data point, show a message box
alerting the user to the bad data as well as its index.

Private Sub CleanHighLessThanClose(ByRef myDataPoints As _

DataRowCollection)

Dim x As Integer

For x = 0 To myDataPoints.Count - 1

If myDataPoints(x).Item("HighPrice") < myDataPoints(x).Item("ClosePrice")

Then

MsgBox("Bad Data Point: High of " & _

myDataPoints(x).Item("HighPrice") & _

" and Close of " & myDataPoints(x).Item("Close") & _

" at " & Str(x))

End If

Next x

End Sub

Step 4 Add a button to Form1, and in the Button1_Click
event, call the subroutine to clean the table passing
a reference to the DataRowCollection. The Rows
property of the DataTable returns a reference to the
DataRowCollection.

Private Sub Button1_Click(ByVal sender As ...) Handles Button1.Click

CleanHighLessThanClose(myDataSet.Tables("AXPdata").Rows)

End Sub

Step 5 Run the program. Figure 14.3 shows the result.

F I G U R E 14.3

252 Database Programming

Team-LRN

In the AXP table, there are three instance of a high that is
greater than the low. Your program should find them at indexes of
177, 1200, and 2342.

SUMMARY

In this chapter we learned how to use the Collection object as well
as how to create our own Collection class by inheriting from the
CollectionBase class for adding Option objects to a strongly typed
Portfolio object. Further we looked at the importance of using clean
data when making financial calculations and forecasts. Since data
stored in a DataSet is already in a DataRowCollection, we can
immediately scan data for errors by passing a reference to the
DataRowCollection to procedures containing data-cleaning
algorithms.

Introduction to Data Structures 253

Team-LRN

PROBLEMS

1. What is a collection?
2. How does a collection differ from an array?
3. What are common types of data corruption?
4. What are some techniques for scanning for dirty data?
5. What is the CollectionBase class?

254 Database Programming

Team-LRN

PROJECT 14.1

In the DirtyFinance.mdb database, the IBM table contains missing
data. Create a VB.NET Windows application that finds the three
bad entries and deletes them from the database.

To complete this project you will need to use the IsDBNull()
function. The IsDBNull() function returns True or False indicating
whether a given object is of type System.DBNull. A System.DBNull
object represents missing data in a data set. As may be intuitively
deduced, missing data is not held as a Nothing value, nor is it held
as a string with no value such as “”.

PROJECT 14.2

The MRK table in the DirtyFinance.mdb database is rife with bad
data, including bad and missing data points, bad dates, and
column-shifted data. Create a DTMS to find the bad data. Also,
allow the user to view the bad data and either update it or delete it.

Introduction to Data Structures 255

Team-LRN

This page intentionally left blank.

Team-LRN

C H A P T E R 15

Advanced Data Structures

The System.Collections namespace contains several classes for
collections of objects. These Collection classes differ from the
Collection class we discussed in Chapter 14. Notice, however, the
inclusion in this namespace of the CollectionBase, which we looked
at briefly in the previous chapter. Here is a list of the Collection
classes in the System.Collections namespace:

System.Collections

Namespace Classes Description

ArrayList An array whose size is dynamic
BitArray A compact array of bit values represented as

Booleans
CaseInsensitiveComparer Compares two nonstring objects for equivalence
CaseInsensitiveHashCodeProvider Supplies a hash code for a nonstring object
CollectionBase The abstract base class for a collection
Comparer Compares two objects for case-sensitive

equivalence
DictionaryBase The base class for a collection of key-and-value

pairs
Hashtable A collection of key-and-value pairs organized by

hash code
Queue A first-in, first-out collection of objects
ReadOnlyCollectionBase The abstract base class for a read-only collection
SortedList A collection of key-and-value pairs that are sorted

by key and are accessible by both key and
index

Stack A last-in, first-out collection of objects

Structure Description

DictionaryEntry Defines a dictionary key-and-value pair

We will not discuss fully each of these classes. However, we
will illustrate a hash table and leave it to the reader to investigate

257

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

the various members of each of the classes should the need for
them arise. For now, be aware that they exist, and understand their
differing descriptions.

HASH TABLES

A hash table is a collection of key-and-value pairs based upon the
hash code of the element’s key. Each element is then stored in a
DictionaryEntry object. Because of the way they are constructed,
hash tables allow for speedy retrieval of elements in the hash table.
When an application needs to store elements, it creates a scheme to
convert the element’s key value to a subscript, which then becomes
the location of that object in the collection. To retrieve the object
then, the program converts the key value using the same scheme to
find and return the object from its location. This process is called
hashing.

When we convert a key to an index value, we are scrambling
the bits. Problems can arise, however, when two different keys hash
into the same element in an array. Since we certainly cannot store
two different records in the same location, we need to find an
alternative location via some method. The VB.NET Hashtable class
solves this problem by having each cell of the hash table be a
bucket, which is a collection of all the key-value pairs that hash to
that cell. This entire process is invisible to us since the hash table’s
hashing function calculates where to put the value in the hash table.
This function is applied to the key of the key-value pair of objects.
By using this process, any object can be added to a hash table.

The VB.NET Hashtable class implements the IDictionary,
ICollection, IEnumerable, ISerialization, IDeserializationCallback,
and ICloneable interfaces. As a result, there are several member
variables, properties, and methods associated with Hashtable
objects. Some of the more important members to be aware of are:

Public

Constructor Description

Constructor Initializes a hash table

Public

Properties Description

Count Returns the number of elements in the hash table
Item Returns or sets the value of an element in the hash table

258 Database Programming

Team-LRN

Public

Properties Description

Keys Returns a collection containing the keys in the hash table
Values Returns a collection containing the values in the hash table

Public

Methods Description

Add Adds an element to the hash table
Clear Deletes all elements from the hash table
ContainsKey Determines whether the hash table contains a specific key
ContainsValue Determines whether the hash table contains a specific value
CopyTo Copies the elements of the hash tables to a one-dimensional array
Equals Determines whether two objects are equal
GetEnumerator Returns an IDictionaryEnumerator that can iterate through the hash

table
Remove Deletes a single element from the hash table

Protected

Methods Description

GetHash Returns the hash code for a specified key
KeyEquals Compares an object with a specific key in the hash table

Since the elements of a hash table may be of different types, we
can loop through the elements in a hash table using an
IDictionaryEnumerator. Here is an example from the program
presented later in the chapter:

Dim enumerator As IDictionaryEnumerator = myPortfolio.GetEnumerator()

txtPortfolio.Text = "PORTFOLIO ELEMENTS:" & vbCrLf

While enumerator.MoveNext()

txtPortfolio.Text += enumerator.Value.ToString & vbCrLf

End While

An IDictionaryEnumerator itemizes the elements of a
DictionaryEntry object. When an enumerator is created, its position
is before the first element in the dictionary. As a result, we must call
theMoveNext() method in order to advance to the first element. We
can then use the Current() property or the Value() property to
retrieve the element at which the enumerator is positioned. And
then we can call MoveNext() and iterate through all the elements in
the hash table. If the enumerator runs off the end of the hash table,
the MoveNext() method will simply return a false value. So we can
loop while MoveNext() is True, as in the example shown above. An
enumerator will be invalidated if changes are made to the hash

Advanced Data Structures 259

Team-LRN

table while it is being used. Here are the key properties and
methods of an IDictionaryEnumerator:

Public

Properties Description

Current Retrieves the current element in the dictionary
Entry Returns both the key and the value of the current dictionary entry
Key Returns the key of the current dictionary entry
Value Retrieves the current element in the dictionary

Public

Methods Description

MoveNext Moves the enumerator to the next element in the dictionary
Reset Moves the enumerator to the position before the first element

Now let’s use a hash table to create a robust portfolio object
with a great deal more functionality than the one using the
Collection class that we looked at in the previous chapter.

Step 1 Open a new Windows application named Portfolio.
Step 2 Create the GUI shown in Figure 15.1.
Step 3 On your GUI, there should be seven text boxes. In

the Properties windows, rename these controls
txtSymbol, txtQuantity, txtStockPrice, txtVolatility,
txtDelta, txtPortfolio, and txtPortStatus. The large
text box in the middle, txtPortfolio, should have
the multiline property set to True and the scroll
bar property set to Vertical. Also on your GUI,
there should be a combo box. Rename this combo
box cboCallPut. There should be eight buttons
on your form. Rename these controls cmdBuy,
cmdSell, cmdGetMeOut, cmdContains, cmdIs-
Empty, cmdRetrieve, cmdCompute Delta, and
cmdListKeys, respectively.

Step 4 Now to add some code. Add a reference to
Options.dll and Import Options as well as
System.Collections at the top of your Form1 code
window.

Imports System.Collections
Imports Options

260 Database Programming

Team-LRN

Step 5 In the general declarations section of the Form1 code
window, create a new Hashtable object named
myPortfolio.

Dim myPortfolio As New Hashtable()

Step 6 Add the following code to the cmdBuy_Click event
subroutine:

Private Sub cmdBuy_Click(ByVal sender As ...) Handles cmdBuy.Click

Dim intOptionQuantity As Integer = txtQuantity.Text

Dim strSymbol As String = txtSymbol.Text

If cboCallPut.Text = "CALL" Then

If myPortfolio.ContainsKey(strSymbol) = False Then

Dim myOption As New CallOption(txtSymbol.Text, _

intOptionQuantity)

myPortfolio.Add(strSymbol, myOption)

Else

myPortfolio(strSymbol).Quantity += intOptionQuantity

If myPortfolio(strSymbol).Quantity = 0 Then _

myPortfolio.Remove(strSymbol)

End If

Else

If myPortfolio.ContainsKey(strSymbol) = False Then

Dim myOption As New PutOption(txtSymbol.Text, _

intOptionQuantity)

F I G U R E 15.1

Advanced Data Structures 261

Team-LRN

myPortfolio.Add(strSymbol, myOption)

Else

myPortfolio(strSymbol).Quantity() += intOptionQuantity

If myPortfolio(strSymbol).Quantity = 0 Then _

myPortfolio.Remove(strSymbol)

End If

End If

ListPortfolioElements()

End Sub

Several things are going on in this routine. First of all, the
symbol and quantity are read into variables. Second, the code
distinguishes between call and put. If Call is selected in the combo
box, a CallOption is added to myPortfolio. Likewise, if Put is
selected, a PutOption object is added. Before either one is added,
however, the program checks to see if that particular option already
exists in myPortfolio using the myPortfolio.ContainsKey(strSym-
bol) member function. If myPortfolio already contains a position in
that option, it simply increments the quantity of the current position.
If there is no current position in that option in myPortfolio, then it
creates the new CallOption or PutOption object and adds it to
myPortfolio. Third and last, the procedure calls the ListPortfolio-
Elements() subroutine, which we will look at shortly.

Step 7 Add the following code for the cmdSell_Click event
subroutine. The cmdSell_Click event routine is the
same as the cmdBuy routine except that it subtracts
the quantity rather than adds it.

Private Sub cmdSell_Click(ByVal sender As ...) Handles cmdSell.Click

Dim intOptionQuantity As Integer = txtQuantity.Text

Dim strSymbol As String = txtSymbol.Text

If cboCallPut.Text = "CALL" Then

If myPortfolio.ContainsKey(strSymbol) = False Then

Dim myOption As New CallOption(txtSymbol.Text, _

-intOptionQuantity)

myPortfolio.Add(strSymbol, myOption)

Else

myPortfolio(strSymbol).Quantity -= intOptionQuantity

If myPortfolio(strSymbol).Quantity = 0 Then _

myPortfolio.Remove(strSymbol)

End If

Else

If myPortfolio.ContainsKey(strSymbol) = False Then

Dim myOption As New PutOption(txtSymbol.Text, _

-intOptionQuantity)

myPortfolio.Add(strSymbol, myOption)

262 Database Programming

Team-LRN

Else

myPortfolio(strSymbol).Quantity() -= intOptionQuantity

If myPortfolio(strSymbol).Quantity = 0 Then _

myPortfolio.Remove(strSymbol)

End If

End If

ListPortfolioElements()

End Sub

Step 8 Add the following code to the cmdRetrieve_Click
event:

Private Sub cmdRetrieve_Click(ByVal sender As ...) Handles cmdRetrieve.Click

Dim strSymbol As String = txtSymbol.Text

Dim resultOption As Object = myPortfolio(strSymbol)

If Not resultOption Is Nothing Then

txtPortStatus.Text = "Retrieved: " & resultOption.ToString()

Else

txtPortStatus.Text = txtSymbol.Text & " not in the Portfolio."

End If

ListPortfolioElements()

End Sub

The cmdRetrieve_Click event finds the specific element within
myPortfolio, if it exists. In this example, we are just printing out in a
text box the fact that it was found. Inmore sophisticated production
programs and systems, we would probably want to do something
more important.

Step 9 Add the following code to the cmdIsEmpty_Click
event:

Private Sub cmdIsEmpty_Click(ByVal sender As ...) Handles cmdIsEmpty.Click

If myPortfolio.Count = 0 Then

txtPortStatus.Text = "Portfolio is empty."

Else

txtPortStatus.Text = "Portfolio is not empty."

End If

ListPortfolioElements()

End Sub

This event simply uses the myPortfolio.Count method, as you can
see. The simplicity of using System.Collections classes is what
makes them so powerful.

Step 10 Add the following code to the cmdContains_Click
event:

Private Sub cmdContains_Click(ByVal sender As ...) Handles cmdContains.Click

Dim strSymbol = txtSymbol.Text

txtPortStatus.Text = "Contains: " & myPortfolio.ContainsKey(strSymbol)

End Sub

Advanced Data Structures 263

Team-LRN

This subroutine simply calls the ContainsKey() method of
myPortfolio to check and see whether a specific element is present
in the library. The ContainsKey() method returns a Boolean.

Step 11 Add the following code to the cmdGetMeOut_Click
event:

Private Sub cmdGetMeOut_Click(ByVal sender As ...) Handles cmdGetMeOut.Click

myPortfolio.Clear()

txtPortStatus.Text = "You are out. Portfolio is now empty."

ListPortfolioElements()

End Sub

The cmdGetMeOut_Click event calls the Clear() method of the
Hashtable object myPortfolio, which removes all the elements from
the library.

Step 12 Add the following code to the cmdListKeys_Click
event:

Private Sub cmdListKeys_Click(ByVal sender As ...) Handles cmdListKeys.Click

Dim enumerator As IDictionaryEnumerator = myPortfolio.GetEnumerator()

txtPortfolio.Text = "PORTFOLIO KEYS:" & vbCrLf

While enumerator.MoveNext()

txtPortfolio.Text += enumerator.Key & vbCrLf

End While

End Sub

Here we see the IDictionaryEnumerator at work, as we discussed in
the example.

Step 13 Add the following code for the ListPortfolio-
Elements() subroutine:

Private Sub ListPortfolioElements()

Dim enumerator As IDictionaryEnumerator = myPortfolio.GetEnumerator()

txtPortfolio.Text = "PORTFOLIO ELEMENTS:" & vbCrLf

While enumerator.MoveNext()

txtPortfolio.Text += enumerator.Value.ToString & vbCrLf

End While

End Sub

Here again we see the IDictionaryEnumerator at work calling the
ToString() method of each successive enumerator.Value.

Step 14 Add the following code for the ComputeDelta_Click
event:

Private Sub ComputeDelta_Click(ByVal sender As ...) Handles _

ComputeDelta.Click

Dim enumerator As IDictionaryEnumerator = myPortfolio.GetEnumerator()

264 Database Programming

Team-LRN

Dim myDelta As Double = 0

While enumerator.MoveNext()

enumerator.Value.StockPrice() = Val(txtStockPrice.Text)

enumerator.Value.Volatility() = Val(txtVolatility.Text)

myDelta += (enumerator.Value.Quantity * enumerator.Value.Delta)

End While

txtDelta.Text = Format(myDelta * 100, "#.00")

End Sub

The portfolio delta calculation takes the individual option deltas
times the number of contracts times 100 shares per contract to
arrive at a portfolio delta.

Step 15 Run the program (see Figure 15.2).

SUMMARY

In this brief chapter we have illustrated the use of a Hashtable
object. Several classes, including hash tables, are defined in the
System.Collections namespace. As you have seen, implementing

F I G U R E 15.2

Advanced Data Structures 265

Team-LRN

collection objects greatly reduces the complexity of dealing with
multiple objects of similar or even different types. In a later chapter
we will create VB.NET applications that simulate placing buy and
sell orders on real derivatives markets. As trades are “executed,”
you should think about how you can manage your portfolio of
positions as a collection of objects. This will make the jump to
calculating portfolio hedge ratios rather simple.

266 Database Programming

Team-LRN

PROBLEMS

1. What is a hash table?
2. What are Queues and Stacks?
3. What is an IDictionaryEnumerator?
4. The properties of a CallOption differ from the fields in

the OptionTrades and OptionContracts tables in the
Options.mdb database. The process of converting the
information in an object to another data structure is
called mapping. How could we map an OptionTrades
record in the database into a CallOption or PutOption
object?

5. If our portfolio consisted of options on several
different stocks, how could we keep track of the
respective deltas?

Advanced Data Structures 267

Team-LRN

PROJECT 15.1

The Windows application presented in the chapter example uses
user inputs for stock price and volatility. Create a new VB.NET
program that provides the same functionality, but connects to the
Options.mdb database to retrieve the current bid as the stockprice
and connects to the Finance.mdb database to calculate the historical
volatility. You may use whatever time period you like to calculate
volatility.

PROJECT 15.2

The Options.mdb databased contains information about several
OptionTrades. Use this table to populate a portfolio object as in the
chapter example.

268 Database Programming

Team-LRN

S E C T I O N F O U R

Advanced VB.NET
Implementation

The world hates change, yet it is the only thing that has
brought progress.

Charles F. Kettering

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

This page intentionally left blank.

Team-LRN

C H A P T E R 16

Software Connectivity and
Interoperability

As recently as 1990, the idea of automated trade execution was for
the most part inconceivable. But today automated systems and
electronic exchanges have completely redefined the industry.
Without sophisticated technology, modern financial markets would
cease to exist. Today global markets and global trading never stop.
Opportunities come and go quickly, and trades must be sent in
milliseconds. Securities and derivatives transactions have become
instantaneous and inexpensive. As technology has evolved and
will continue to evolve, it will completely redefine the tasks of
traders. The only way for traders and firms to survive trading in the
financial markets is through ever-better understanding of market
processes and the use of ever-faster technology. Yesterday’s trading
ideas and technologies fade quickly. In the twenty-first century,
real-time data is simply a raw material. Successful traders and
trading firms will be the ones that develop the technological and
analytic infrastructure to transform data into knowledge and then
into action and then into continuously improving processes.

The rapid increase in the use of technology has made the
trading of securities and derivatives more pervasive. It has freed
markets and exchanges from their geographic boundaries and
stimulated globalization. As more companies and instruments are
listed for trading on electronic markets around the world, traders
and trading firms will increasingly be seeking to get connected
using legacy software and hardware ill-suited for the job, given the
number and complexity of connections that will be needed.

271

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

Whatever the future holds, one thing is for sure: The ability of
exchanges and trading firms to survive depends on the quality of
their technology. The proliferation of live market feeds and the
resulting tidal wave of data are increasing the complexity of the
trading selection process and the architecture of trading
technology. The new paradigm will necessitate open systems and
application programming interfaces for connectivity and inter-
operation. In other words, the future lies in middleware.

Middleware is a computing model that offers institutions a
means to embrace the future of trading technology without
destroying the foundation of systems created in the past. Large
trading institutions often incorporate several disparate legacy
systems for their front, middle, and back office, and as we will be
able to see, the goals of straight-through processing (STP) and
firmwide risk management are and will be severely hindered by
the use of multiple systems. Middleware provides a solution.

Through the use of middleware, our trading systems can have
the ability to back-test trading systems against historical data,
assimilate real-time market information from a multiplicity of
sources, perform complex quantitative calculations, scan the
markets for profitable opportunities, place buy and sell orders
automatically, and manage a portfolio of position and monitor risk.
Through network connectivity and interoperation of software
applications, automated trading systems can trade any instrument
at anytime anywhere in the world.

Whether we realize it or not, virtually all software applications
make requests to other programs to perform some tasks on their
behalf. To accomplish the goals of market connectivity, of data
transmission between disparate technologies, and of other higher-
level quantitative processes, such as optimization, it will be
necessary for our VB.NET applications to make requests to other
software systems as well. This will largely be done through the use
of application programming interfaces and, in the case of data
transmission, XML. Some software applications, including some
electronic exchanges, allow for connectivity and interoperation via
both methods, APIs and XML. We will look at both over the next
four chapters. Even within theMicrosoft family of visual languages
and even within Visual Basic itself, we will often confront issues

272 Advanced VB.NET

Team-LRN

relating to interoperability of systems, particularly in legacy
systems using Component Object Model (COM) objects.

APPLICATION PROGRAMMING INTERFACES

In short, a software application’s API defines the proper way for
other applications to interact with and request services from it. In
the trading industry, APIs facilitate the exchange of data between
different software applications andwill provide for interoperability
between financial industry software packages and our own
software built in VB.NET. Through APIs we are able to integrate
multiple commercial off-the-shelf (COTS) software products with
our own proprietary software to create customized trading and risk
management systems—and at a fraction of the cost of developing a
complete system from the ground up. APIs allow us to create a kind
of middleware that shares data across different trading platforms
and networks. Most, if not all, software packages that you will
encounter as a financial engineer will have APIs that either are a
free bundled part of their software package itself or are separately
licensed packages available for a fee.

An API is a set of rules for writing function calls or
instantiating objects that access function definitions or classes in a
library, usually in the form of a .dll file. Programs we create that use
these functions or classes can communicate with the COTS
software to, for example, run an optimization routine, exchange
information such as market data feeds, process buy and sell
transactions, and post trade fill information to a database. Once we
have created objects based upon the classes in the library, the API
classes do all the work for us, totally transparent to our application.
In addition to performing data-sharing tasks, APIs usually check
network parameters and error conditions for us so as to deliver
robust interoperation between the programs.

As opposed to fully open source code, which exposes the
software maker’s proprietary methods, APIs represent a stream-
lined way to grant access to an application without giving away
intellectual property. APIs grant less access than open source code
but certainly more than entirely closed software.

Software Connectivity and Interoperability 273

Team-LRN

Among financial markets COTS software, APIs exist in many
different forms. You should fully understand the implementation
of the API, contained in the software vendor’s API documentation,
before you proceed.

EXCHANGE APPLICATION PROGRAMMING
INTERFACES

The major exchanges all have APIs to which developers can write
to create market data feed and order routing applications. Writing
to an exchange API, or alternatively to the FIX interface, and
building proprietary software from the ground up requires a
healthy amount of research, time, and money. As was discussed in
Chapter 1, for most small firms this is not a feasible option for
building automated trading systems. However, we can gain a
somewhat greater understanding of market connectively and
electronic exchange order routing if we briefly look at three
exchange APIs.

The Chicago Board Options Exchange offers an API through
which developers can access the CBOE’s Electronic Trading
System. The CBOE also supports the FIX messages for the
purposes of order routing. This FIX interface is available as an
alternative to connection through the API.

The all-electronic International Securities Exchange (ISE)
offers an API to which member firms can program to access
market data, send trades, and receive trade fill confirmations and
information. Through this API, the ISE’s electronic access members
andmarket makers can develop applications for automated trading
purposes or for back-office systems.

The Chicago Mercantile Exchange has the Globex system,
which contains open APIs for market data and order routing so that
trading firms can write applications to receive real-time market
data from and place automated orders on the CME’s electronic
markets.

As we have seen previously, firms involved in trading on
multiple markets will need to connect to multiple APIs for market
data and order entry. And every exchange API is different.
Furthermore, to add to the complexity, in most cases applications

274 Advanced VB.NET

Team-LRN

developed to interact with an exchange’s API must be approved by
the exchange itself. Fortunately several third-party developers
have written customized applications to the respective exchange
APIs for market data and execution of securities, futures, and
options trades. Wewill look at how to connect to two of these COTS
software applications in Chapter 17.

COM INTEROPERATION

As we have seen in Chapter 10, in order to create VB.NETcode that
requests services from an external component, we must first add a
reference to it. The components can be of the following types:

^ .NET class libraries
^ COM components
^ XML web services

We have, up till now, looked only at .NET class libraries.
Although the new .NET libraries and assemblies are now a much-
improved model for development, at times we need to make use of
COM objects. .NET applications may someday replace COM ones,
but until then, if we need to use a COM object in a VB.NET
application, we will need to understand something about COM
itself and how it differs from the .NET Framework.

COM is a Microsoft specification used prior to .NET that
controls library usage and compatibility and communication.
Through COM, objects are exposed and their functionality is
available to other applications. Via COM, libraries are ensured to be
highly organized and reusable. Microsoft defined COM so that
developers could create compatible libraries of classes and
components. Virtually all Windows libraries that were constructed
prior to the advent of the .NET Framework adhere to the COM
specification, and most software today includes COM objects. But
COM is difficult to program and deploy because developers must
guarantee that new COM components are compatible. If a COM
library is placed on a system without being properly registered,
applications will be unable to find or use the library.

An understanding of COM involves an understanding of how
COM objects exist in memory. Whereas .NET objects are held in

Software Connectivity and Interoperability 275

Team-LRN

managed memory, which is controlled by CLR (the common
language run time), COM objects are held in unmanaged memory.
The CLR in .NET manages certain tasks such as dynamic memory
allocation and type checking. VB.NET uses managed code, but we
can access the unmanaged COM code using interoperability
assemblies. Many companies have invested significant amounts of
time and effort into creating COM components but now find
themselves eager for a migration to .NET. Fortunately Microsoft
created tools for integrating legacy systems and COM components
into .NET Framework implementations.

The .NET Framework provides for direct interaction between
objects in managed and unmanaged memory. These tools enable
interoperability with COM so that we can use existing COM objects
in our VB.NET programs. This process is known within the .NET
Framework as COM interop.

VB.NET uses an interoperability assembly to find COM
methods and translate data between the .NETand COM types. This
translation is performed by the run-time callable wrapper (RCW),
which is created by .NET based upon the information in an object’s
interop assembly. As we discussed in Chapter 10, assemblies are
collections of functionality usually in the form of classes contained
in one or several files with their assembly manifest. Assembly
manifests perform the same function in .NETas type libraries do in
COM components. They include information about version
numbering, constituent files, types and resources, compile-time
dependencies, and permissions.

The RCW controls the COM object and carries out
communication between .NET and COM code. When we create
an instance of a COM object in VB.NET, we are really creating a
new instance of the RCW of the object. Fortunately for VB.NET
developers, the communication between an RCW and its COM
object is completely transparent to us. So we can create and interact
with COM objects as if they were .NET objects. Adding references
to COM objects is the same as in previous incarnations of Visual
Basic except that .NETadds the creation of this interop assembly to
the process. References to the COM object properties and methods
in VB.NETare routed to the interop assembly prior to proceeding to
the actual COM object code. On the way back, responses are routed

276 Advanced VB.NET

Team-LRN

first to the interop assembly and before being forwarded back to
calling code in .NET.

Should the need arise, we can create new COM objects in
VB.NET by using the .NET Framework’s COM class template,
which can create a new class and configures the project so as to
generate the COM class and register it with the operating system.
COM objects referenced via interop assemblies must be registered,
which we accomplish by using the Regsvr32 utility included with
all Windows operating systems. If you are familiar with VB 6.0, you
are aware that ActiveX controls are commonly used COM
components. Through the interop assembly, we can import ActiveX
controls into our .NET IDE toolbox using the Customize Toolbox
option, which will list all the COM components that are registered
with the operating system. We are then free to use the ActiveX
control in our VB.NET application. .NET Framework components
do not need to be registered since .NETcomponents maintain all of
their type identification information internally.

In Visual Basic .NET, adding references to COM objects that
have type libraries is similar to doing so in previous versions of
Visual Basic. However, Visual Basic .NET adds the creation of an
interop assembly to the procedure. References to the members of
the COM object are routed to the interop assembly and then
forwarded to the actual COM object. Responses from the COM
object are routed to the interop assembly and forwarded to your
.NET application. If, for example, the input argument and return
values of a COM object’s properties and methods use different data
types than .NET does, a process called interop marshaling converts
equivalent data types as they flow back and forth between COM
objects. In fact all .NET programs share a set of common types that
permit interoperability of objects, regardless of the programming
language.

While COM objects have been the foundation of Visual Basic
applications for many years, .NET applications designed for CLR
offer many advantages. In the .NET framework, COM components
are no longer necessary. Through the use of assembly manifests,
.NET components hold on to the benefits of COM while solving
many of its inherent problems.

Software Connectivity and Interoperability 277

Team-LRN

SUMMARY

The financial markets of the twenty-first century require
connectivity and interoperability of disparate hardware and
software systems. The use of APIs and XML will enable software
we create in VB.NET to connect and exchange information with
other systems. Furthermore, even within Visual Basic itself there
are interoperability issues to confront, particularly those pertaining
to legacy systems making use of COM components.

278 Advanced VB.NET

Team-LRN

PROBLEMS

1. What is middleware?
2. What is an API?
3. Rather than connecting to exchange APIs ourselves, what is

our alternative for creating automated trading systems?
4. What is COM?
5. What is an RCW?

Software Connectivity and Interoperability 279

Team-LRN

This page intentionally left blank.

Team-LRN

C H A P T E R 17

Connecting to
Trading Software

An important problem to solve when developing automated
trading or risk management systems is market connectivity.
Connecting to live electronic markets is no small task. Millions of
dollars and literally years of time can be spent building such a
system from the ground up. However, we can substantially reduce
the amount of up-front time and expense needed to establish a
connection to a market by licensing third-party software that
already provides the required functionality. What’s more, most of
these software packages already connect to more than one market,
sometimes dozens of them, around the world enabling traders, or
financial engineers, to be active in multiple markets simul-
taneously. More often than not, this kind of third-party software
will include an API that we can write to in VB.NET.

These APIs usually exist in a single .dll library file or a set of
.dll files. These libraries contain classes that enable us to connect to
the licensed COTS software. When we create objects based upon
the classes in such a library, we can use the functionality provided
by these objects to interact with the software and subsequently pass
data back and forth. Such functionality might include getting live,
real-time market quotes, placing buy and sell orders, or receiving
trade fill confirmations.

Rather than require that you license some of this commercial
software yourself, we have provided two libraries on the CD, called
Trader API.dll and OptionsAPI.dll.

281

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

CONNECTING TO A FUTURES MARKET

The classes in the TraderAPI.dll library allow us to simulate a
connection to a popular industry software package from Trading
Technologies, Inc., called X_Trader. Trading Technologies, Inc. (TT)
develops high-performance derivatives trading software including
the X_TRADER product, which provides professional traders with
connectivity to electronic derivatives markets around the world.
Furthermore, the X_TRADER application contains an API consist-
ing of 10 classes that financial engineers can instantiate for the
purposes of developing, among other things, automated analytics,
order entry, and trade fill information processing systems.
However, you do not need to license X_Trader to use the
TraderAPI.dll library included on the CD.

As we said, by creating objects from the classes in
TraderAPI.dll, we achieve the goal of market connectivity, albeit
simulated. As a result, a VB.NET program that adds a reference to
TraderAPI.dll and instantiates the objects in it can see the “real-
time” market price movements of the S&P 500 eMini futures
market, can place market buy and sell orders, and can receive trade
fill confirmations.

TraderAPI.dll can be used to create applications to customize
order entry screens, monitor live fill feeds, perform live profit and
loss calculations, and automatically execute trades based upon
outside conditions and customized algorithms. While providing
only a subset of all the possible functionalities, TraderAPI.dll will
give our programs the look and feel of connecting to real markets
through TT’s X_Trader API. While APIs are always changing and
being upgraded, we have, in every way possible, tried to make the
architecture of TraderAPI.dll mimic the API that comes with
X_TRADER.

The TraderAPI.dll file included with this book uses the same
classes, method calls, and methodology, albeit somewhat abbre-
viated in functionality, as if you were in a real-life environment
using the X_TRADER API. TraderAPI.dll contains five classes that
simulate a portion of the X_TRADER API’s functionality. The five
classes are:

282 Advanced VB.NET

Team-LRN

TraderAPI

Classes Description

InstrObj A tradable object
InstrNotify Must be attached to an InstrObj so when the instrument changes,

messages can be sent
OrderProfile Contains all order information for submission
OrderSet Represents a subset of orders on this machine
FillObj Stores all information about each fill

InstrObj Class

An InstrObj object represents a tradable object, that is, an
instrument. If we want to receive prices or submit orders, we
must create an InstrObj object. Attaching an InstrNotify object to an
InstrObj object will allow us to receive price updates as they occur.
To create an active InstrObj object, we must supply values for the
Exchange, ProdType, Product, and Contract properties. Here are
the public properties and methods associated with the InstrObj
class.

Public

Properties Description

Contract Contract identifier
Exchange Gateway used by the instrument
ProdType Product type of the instrument
Product Product name of the instrument

Public Methods Description

CreateNotifyObject() Creates a notification object for the instrument
GetData() Returns the current values of properties identified by

parameter string
Open() Establishes a connection to the instrument

InstrNotify Class

An InstrNotify object, which is attached to an InstrObj object, alerts
our application when some aspect, namely the price, of an InstrObj
changes. If we want to monitor a price feed for an instrument,
we must create an InstrNotify object. To create an InstrNotify
object, we must use the InstrObj object’s CreateNotifyObject()
method.

Connecting to Trading Software 283

Team-LRN

Dim myInstrument as New InstrObj()

Dim myInstrNotifyObj = New myInstrument.CreateNotifyObject()

Public Event Description

OnNotifyFound() Fires when a connection to the instrument is established

OrderProfile Class

An OrderProfile object contains the information needed for order
submission. An OrderProfile uses an OrderSet object to actually
send an order. The public properties and methods are listed here:

Public Properties Description

BuySell Buys or sells
GetPrice Returns the price of an instrument
GetProduct Returns the product name of an instrument
Instrument Instrument to be traded
Price Order price
Quantity Order quantity

Public Methods Description

SetTradeParams() Market orders only; TraderAPI.dll does not support limit orders
SetTradeType() Sets the trade type

OrderSet Class

An OrderSet object is used to submit orders. An OrderSet receives
the order information from an OrderProfile object and then sends
the order. Characteristics include the following:

Public Properties Description

EnableOrderAutoDelete Deletes all orders in the OrderSet
EnableOrderFillData Returns all the fill information
EnableOrderSend Orders send status

Public Methods Description

Open() Opens the order set. Default is not open
SendOrder() Submits an order to the exchange
SetLimits() Sets OrderSet limits

Public Event Description

OnOrderFillData() Fires when a fill has been received

284 Advanced VB.NET

Team-LRN

FillObj Class

TraderAPI creates a new FillObj when it is notified of a new fill. The
OrderSet’s OnOrderFillData event will receive a fill object as an
input argument. It’s characterized by this public method:

Public Method Description

GetFillInfo() Returns the current values of the fill object

In our VB.NET applications, we can add a reference to the
TraderAPI.dll file, import it, and instantiate objects based upon the
classes in the library. In this way, we can “connect to the market” to
get a simulated data feed, place buy and sell orders, and receive
trade fill information. Again, TraderAPI.dll is a stripped-down
version of TT’s X_Trader API and provides only basic functionality,
but it will give you the look and feel of creating real automated
trading software.

Let’s create a program that connects to the market in the eMini
S&P 500 futures contracts traded on the Chicago Mercantile
Exchange.

Step 1 Start a new Windows application named PriceFeed.
Step 2 To your Form1, add five labels in a row.
Step 3 In the Projects menu tab, select Add Reference. Select

Browse and find the TraderAPI.dll file. In the code
window, above the class definition for Form1, add:

Imports TraderAPI

Step 4 To get a price feed, we need to set up an InstrObj
object and an InstNotify object. In the general
declarations section of the Form1 code window,
add the following code:

Private WithEvents InstNoti As InstrNotify
Dim Inst1 As InstrObj

Step 5 Also we will need an array of strings to receive the
quote information. Add the code to declare and
instantiate an array of strings in the general
declarations section:

Dim MyData As String() = New String() {}

Connecting to Trading Software 285

Team-LRN

Step 6 In the form load event, add the code to create the
objects and open the connection with the Chicago
Mercantile Exchange for the eMini S&P 500 contract
for December 2003. This will require setting the four
properties of the InstrObj object.

Private Sub Form1_Load(ByVal sender As ...) Handles MyBase.Load

Inst1 = New InstrObj()

InstNoti = Inst1.CreateNotifyObj()

Inst1.Exchange = "CME-S" ’ Setup gateway name

Inst1.Product = "ES" ’ Setup Product name

Inst1.ProdType = "FUTURE" ’ Setup Product type

Inst1.Contract = "Dec03" ’ Setup Expiry information

Inst1.Open() ’ Open/access the instrument

End Sub

Step 7 The InstrNotify object has an event, OnNotify-
Found(), that fires when the price of the instrument
object changes. When this happens, we want to
retrieve the new bid and ask prices, the bid and ask
quantities, and the last price. Add the following
event handler for the OnNotifyFound() event in the
Form1 code window:

Private Sub InstNoti_OnNotifyFound(ByRef pInstr As InstrObj) _

Handles InstNoti.OnNotifyFound

MyData = pInstr.GetData("BidQty,Bid,Ask,AskQty,Last")

Label1.Text = MyData(0)

Label2.Text = MyData(1)

Label3.Text = MyData(2)

Label4.Text = MyData(3)

Label5.Text = MyData(4)

End Sub

Step 8 Run the program. You should see the form window
populated with a simulated moving market—with a
moving bid and offer, moving quantities, and last
prices hitting the bid and offer. See Figure 17.1.

Now let’s add the ability to place some orders and get back
trade fill confirmations.

Step 9 To place orders, we will need an OrderSet object and
an OrderProfile object. In the general declarations
section of the Form1 code window, add:

Dim WithEvents LiveOrderSet As OrderSet
Dim CurOrdProf As OrderProfile

286 Advanced VB.NET

Team-LRN

Step 10 To the Form1_Load event, add the following code to
create the OrderSet object and enable orders to be
sent:

LiveOrderSet = New OrderSet()
LiveOrderSet.EnableOrderFillData = True
LiveOrderSet.EnableOrderAutoDelete = False
LiveOrderSet.SetLimits("NetLimits", False)
LiveOrderSet.EnableOrderSend = True
LiveOrderSet.Open()

Step 11 Add two buttons to your form. Change the text
properties to say “Buy” and “Sell,” respectively. In
the Button Click events, add the following code:

Private Sub Button1_Click(ByVal sender As ...) Handles Button1.Click

SendOrder("Buy")

End Sub

Private Sub Button2_Click(ByVal sender As ...) Handles Button2.Click

SendOrder("Sell")

End Sub

Step 12 In the form code window, add the following
subroutine called SendOrder():

Private Sub SendOrder(ByVal BuySell As String)

CurOrdProf = New OrderProfile()

Dim intSent As Integer

CurOrdProf.Instrument = Inst1

CurOrdProf.SetTradeType("M2", "L")

CurOrdProf.SetTradeParams(BuySell, 1, "Market")

intSent = LiveOrderSet.SendOrder(CurOrdProf)

CurOrdProf = Nothing

End Sub

F I G U R E 17.1

Connecting to Trading Software 287

Team-LRN

The SendOrder() subroutine creates an order profile, sets the
Instrument property, and calls the SetTradeType() and SetTrade-
Params() methods. In the code above, we are sending a quantity of
one contract. Later, when you become a more accomplished trader,
we will allow you to trade larger amounts. Finally, we send the
order by calling the SendOrder() method of the OrderSet object.

Our method of handling the trade fill confirmations that come
back to us from the market will be to simply print them out in a
message box.

Step 13 Add the following subroutine to handle the
OnOrderFillData() event associated with the
OrderSet object:

Private Sub LiveOrderSet_OnOrderFillData(ByRef my FillObj As FillObj) _

Handles LiveOrderSet.OnOrderFillData

Dim strFillData As String()

strFillData = myFillObj.GetFillInfo("Contract,BuySell,NetQty,Price")

MsgBox(strFillData(0) & " " & strFillData(1) & " " & _

strFillData(2) & " @ " & strFillData(3), , "TradeFilled")

End Sub

Step 14 Run the program. The results are shown in Figure
17.2.

On the CD you will find a program named TotalAPI, which
shows the full functionality of the TraderAPI.dll together with a
DataSet and a DataGrid to list trade fill confirmations. In addition
to taking a look at the code, you can feel free to test your trading
acumen using this program.

F I G U R E 17.2

288 Advanced VB.NET

Team-LRN

CONNECTING TO AN OPTIONS MARKET

The classes in the OptionsAPI.dll library allow us to simulate a
connection to a popular options industry software package from
MicroHedge, Inc. (MH). MH develops high-end equity options
trading and analytics software that provides professional market
makers and traders with a wealth of high-level option portfolio
analytics and risk management tools. MH’s flexible design, which
includes a robust COM wrapper, enables efficient interoperation
with third-party software systems like the one we will build in this
chapter. As a result, trading institutions often use MicroHedge as a
foundation on which they create proprietary systems.

With MH’s Screen Based Trading (SBT) software suite,
automated market analysis and order selection are greatly
simplified through the use of its API, which consists of dozens of
classes. Furthermore, SBT users can send orders to any of the major
U.S. options exchanges, the NYSE, and AMEX, as well as several
ECNs. Through the MH software developer’s kit (SDK) and SBT,
market makers create a single software application to autoquote
markets, manage risk, and employ custom models. As another
example of SBT flexibility, options traders can set implied volatility
curves with one of twenty different calculations, analyze their
portfolio risk under a multiplicity of “what-if” scenarios, and
monitor the national best bids and offers.

As we discussed in Chapter 1, it is extremely important to
realize that most, if not all, of the options exchanges prohibit
automated order entry in their bylaws. There must be human
intervention and trade approval at some point along the way to
entering an order. We will demonstrate this functionality in the
example program. As with the futures example, you do not need to
license MicroHedge software in order to use the OptionsAPI.dll
library included on the CD.

By creating objects from the classes in Options API.dll, we can
achieve the goal of options market connectivity, albeit simulated
and very stripped down. Options analytics requires a huge piece of
software, which MicroHedge is, and we will be able to only
demonstrate the simplest functionality. In any case, a VB.NET
program that adds a reference to OptionsAPI.dll and instantiates
the objects in it can monitor “real-time” price movements of the

Connecting to Trading Software 289

Team-LRN

S&P 500 options market, can place market buy and sell orders, and
can receive trade fill confirmations.

OptionsAPI.dll can be used to gain practice creating
applications to customize order entry screens, monitor live fill
feeds, perform live profit and loss calculations, and execute trades
based upon outside conditions and customized algorithms. While
providing only a very small subset of all the possible functional-
ities, OptionsAPI.dll will give our programs the look and feel of
connecting to real options markets through MicroHedge’s API. The
architecture of OptionsAPI.dll attempts to mimic the SBT API that
you can license from MicroHedge.

The OptionsAPI.dll file included with this book uses the same
classes, method calls, and methodology (although again they are
abbreviated in functionality) as if you were in a real-life
environment using the MH SBT API. As we said, OptionsAPI.dll
contains classes that simulate a portion of the SBT API’s
functionality. Here are the classes included in the OptionsAPI.dll
file:

OptionsAPI Classes Description

MicroHedge An instance of MicroHedge
MHSBT An instance of Screen-Based Trading
CBOEorder A CBOE option order
IndexOp An index option instrument
MHposition A position in MicroHedge

In our VB.NET applications, we can add a reference to the
OptionsAPI.dll file, import it, and instantiate objects based upon
the classes in the library. In this way we can “connect to the market”
to monitor market quotes, place buy and sell orders, and receive
trade fill information. Again, OptionsAPI.dll is a stripped-down
version of MH’s SBT API and provides only basic functionality, but
it will give you the look and feel of creating real trading software.

Let’s create a program that connects to the market in the S&P
500 options contracts traded on the Chicago Board Options
Exchange.

Step 1 Start a new VB.NET Windows application named
OptionOrders.

290 Advanced VB.NET

Team-LRN

Step 2 To your Form1, add a single text box and a button.
Change the Multiline property of the text box to True.

Step 3 In the Projects menu tab, select Add Reference. Select
browse and find the OptionsAPI.dll file. In the code
window, above the class definition for Form1, add:

Imports OptionsAPI

Step 4 To get market prices, we need to set up objects for the
MicroHedge, MHSBT, and MHPosition classes. In the
general declarations section of the Form1 code win-
dow, add the following code:

Public WithEvents mhApp As MicroHedge
Public WithEvents myMHSBT As MHSBT
Dim Pos As MHPosition

Step 5 In the form load event, add the code to create
instances of the objects
.Private Sub Form1_Load(ByVal sender As ...) Handles MyBase.Load

myMHSBT = New MHSBT()

mhApp = New MicroHedge()

Pos = mhApp.GetSymbol("SPY.TEST", True, False)

End Sub

Because MicroHedge is actually a COM object, we would in
the real world use the CreateObject() function to create an instance
of “MicroHedge.Application” in the following way:

mhApp = CreateObject("MicroHedge.Application")

However, in our simulated environment where we may not have
MicroHedge licensed software, we will use the method for
instantiation as shown. COM objects use something called
unmanaged code, which lacks the benefits of VB.NET’s common
language run time. But it should not prevent you from creating
efficient applications in VB.NET. Since a certain amount of
complexity is involved in mixing the VB.NET code with COM
objects, we suggest you contact MicroHedge if you intend to use a
.NET platform for development.

Step 6 To the Button1_Click event, add the following code:

Private Sub Button1_Click(ByVal sender As ...) Handles Button1.Click

GetQuotes()

End Sub

Connecting to Trading Software 291

Team-LRN

The method for accessing options data is significantly
different from what we looked at for futures data. In the previous
example using TT and futures, we connected to the market for a
single instrument and were able to see the market in real time. In
this options example, however, we want to monitor several or
maybe hundreds of option contracts at the same time. This will
necessitate looping through the contracts and refreshing the data at
specified intervals. In this case the data will refresh, GetQuotes(),
when the user clicks the button.

Step 7 Add the following code for the GetQuotes() function.
For simplicity’s sake, the OptionsAPI program will
only show data for 20 call options on the SPY. The
price of the underlying index is approximately 841.00
and will not move.

Private Sub GetQuotes()

Dim i As Integer

Dim cBid, cAsk, cThv, cSym, Days, Strike As Object

cBid = Pos.OptionPairs.FieldArray("cBid")

cAsk = Pos.OptionPairs.FieldArray("cAsk")

cThv = Pos.OptionPairs.FieldArray("cThv")

cSym = Pos.OptionPairs.FieldArray("cSym")

Days = Pos.OptionPairs.FieldArray("Days")

Strike = Pos.OptionPairs.FieldArray("Strike")

TextBox1.Text = "SYMBOL" & vbTab & " BID" & vbTab & _

" ASK" & vbTab & "THEO" & vbCrLf & vbCrLf

For i = 0 To 19

TextBox1.Text &= cSym(i) & vbTab & Format(cBid(i), "##.00") & _

vbTab & Format(cAsk(i), "##.00") & vbTab & _

Format(cThv(i), "##.00") & vbCrLf

Next i

End Sub

Here the GetQuotes() function retrieves the bid, ask, theoretical
value, symbol, days till expiration, and strike every time it is called.
Furthermore it prints the information into TextBox1.

Step 8 Run the program. You should see the form window,
similar to Figure 17.3, populated with simulated
market data when you click the button. The data is
not live, however, and will not change. Click the
button again and you will see that the markets do
change slightly with each refresh.

292 Advanced VB.NET

Team-LRN

Now let’s add the ability to place some orders and get back trade
fill confirmations.

Step 9 To place orders, we will need to specify a quantity.
In the general declarations section of the Form1 code
window, add:

Const QUANT As Integer = 10

Step 10 In the GetQuotes() functions, add the following
code. This code will loop through the market bids
and offers and place orders, using the EnterOrder()
subroutine, to buy orders when the ask price is 10
cents below the theoretical value and to sell orders
when the bid is 10 cents above the theoretical value:

For i = 0 To 19

TextBox1.Text &= cSym(i) & vbTab & Format(cBid(i), "##.00") & _

vbTab & Format(cAsk(i), "##.00") & vbTab & _

Format(cThv(i), "##.00") & vbCrLf

If cAsk(i) + 0.1 < cThv(i) Then

EnterOrder(Month(DateAdd("d", Days(i), #3/1/2003#)), _

F I G U R E 17.3

Connecting to Trading Software 293

Team-LRN

Year(DateAdd("d", Days(i), #3/1/2003#)), cSym(i), _

Strike(i), cAsk(i), QUANT)

ElseIf cBid(i) - 0.1 > cThv(i) Then

EnterOrder(Month(DateAdd("d", Days(i), #3/1/2003#)), _

Year(DateAdd("d", Days(i), #3/1/2003#)), cSym(i), _

Strike(i), cBid(i), -QUANT)

End If

Next i

Step 11 Now add the function code for the EnterOrder()
subroutine:

Private Sub EnterOrder(ByVal ExMonth As Integer, _

ByVal ExYear As Integer, _

ByVal OPRA As String, _

ByVal Strike As Double, _

ByVal Price As Double, _

ByVal Quant As Long)

Dim Inst As New IndexOp()

Dim CBOEOrd As New CBOEorder()

Inst.ExpyMonth = ExMonth

Inst.ExpyYear = ExYear

Inst.OpenClose = 1 ’Open

Inst.CoverNaked = 2 ’Naked

Inst.Root = Microsoft.VisualBasic.Left(OPRA, 3)

Inst.Strike = Strike

Inst.Underlier = Pos.SYMBOL

Inst.CallPut = 1 ’Call

CBOEOrd.OrdPrice = Price

CBOEOrd.OrdQty = Math.Abs(Quant)

CBOEOrd.Account = Pos.Account

CBOEOrd.Duration = 1 ’Day

CBOEOrd.Instrument = Inst

CBOEOrd.PriceType = 2 ’Limit

If Quant > 0 Then

CBOEOrd.Side = 1

Else

CBOEOrd.Side = 2

End If

myMHSBT.PlaceOrder(CBOEOrd)

End Sub

The EnterOrder() subroutine creates an index option object,
IndexOp, and a CBOEorder object and sets the values necessary to
send an order. In this example, we are sending a quantity of 10
contracts. As you will be able to see, though, an order of 10
contracts can grow into a position of 50 or 100 contracts quickly if
the market price does not come back into line with the theoretical
value. Applications that you build will need to devise a way to
handle these situations from a portfolio perspective.

294 Advanced VB.NET

Team-LRN

Step 12 In order to receive trade fill confirmations, add the
following event handler:

Private Sub myMHSBT_OrderEvent(ByVal Order As CBOEorder) _

Handles myMHSBT.OrderEvent

MsgBox("Filled: " & Order.ToString)

End Sub

Our method of handling the trade fill confirmations that come
back to us from the market will be to simply print them out in a
message box.

Step 13 Run the program. Figure 17.4 shows the results.

Now let’s add a timer, so that the data refreshes automatically
without a button click.

Step 14 Remove Button1 and the Button1_Click event
routine. In the toolbox you will find a Timer
control. Add a timer control to your Form1. In the

F I G U R E 17.4

Connecting to Trading Software 295

Team-LRN

Properties window for Timer1, set the Enabled
property to True and the Interval property to 5000.
Add the following code to the Timer1_Tick event
routine:

Private Sub Timer1_Tick(ByVal sender As ...) Handles Timer1.Tick

GetQuotes()

End Sub

Step 15 Run the program. Figure 17.5 shows the results.

The timer will tick every 5 seconds and refresh the data.
Trades will execute as before.

SUMMARY

In this chapter we have looked at two methods for connecting to
real markets through connections to the APIs of two popular
financial industry software packages. Building software for

F I G U R E 17.5

296 Advanced VB.NET

Team-LRN

monitoring real-time prices, performing analytics, and monitoring
trade fills and portfolio risk are absolutely necessary for
implementation of an automated trading system. Several of these
key components may already be present in COTS software. APIs
allow for proprietary analytics to be built on top of these systems.

You should contact the software provider for full documen-
tation of its API before attempting to build a trading system. The
documentation will have all the information on the classes and
their functionalities in the API along with sample programs.

Connecting to Trading Software 297

Team-LRN

PROBLEMS

1. What is the rule regarding automated order entry of
options orders?

2. What is the problem situation with options order entry that
we need to resolve?

3. If the COTS application is a COM object, what would you
do?

4. What is the process for creating objects out of the classes in
an API?

5. Where can you find out more about the objects in an API?

298 Advanced VB.NET

Team-LRN

PROJECT 17.1

Create a single VB.NET application that connects to both the S&P
500 eMini market on the CME and the S&P 500 cash options market
on the CBOE using the TraderAPI and the OptionsAPI libraries.

PROJECT 17.2

To the program in Project 17.1, add a Portfolio object that keeps
track of the instruments bought and sold and the net positions. This
will require the use of the StockOption class, the CallOption class,
and a Futures class, which you will need to create yourself.

Connecting to Trading Software 299

Team-LRN

This page intentionally left blank.

Team-LRN

C H A P T E R 18

XML

Over the last 5 or so years, the ever-increasing demand for
flexibility in application messaging has spawned the Extensible
Markup Language (XML). XML is a fully portable and open
markup syntax for data description and messaging. Further,
beyond being just a markup language, XML is a metalanguage—a
language used to define new markup languages. Whereas
Hypertext Markup Language (HTML) is used for formatting and
displaying data, XML allows users to represent the contextual
meaning of the data they wish to model using human readable
tags.

In this chapter we will cover the basics of XML notation as
well as ways to describe and encapsulate data in an XML
document, also called an XML message. In addition, we will go
over how to write VB.NET programs that encapsulate data in XML
messages and how to send them over the Internet. While only
skimming the surface of XML, this chapter will give you the
knowledge and the context you need to use XML in your VB.NET
programs.

XML AND FINANCIAL MARKETS

The ultimate goal of developing firmwide, real-time global
positioning systems that exploit profitable trading opportunities
and manage risk will require a much higher degree of
interconnectivity between departments within a firm, trading
counterparties, and exchanges than exists today. As a result,
institutions involved in the financial markets have caught on to

301

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

XML as a way to move large quantities of data in real time between
different technology systems. Financial markets, firms, and
professionals who utilize XML find it to be a powerful tool for
financial data representation and messaging and see it as the key
technology in meeting the challenges of global interconnectivity
(Bradley, 2002).

Because XML is a metalanguage, segments of the financial
markets industry have already been able to create their own
markup languages specifically for their own domains. In addition
to learning the technology of XML in this chapter, we will be able to
see some of the business reasons why financial institutions are so
keen on developing XML-based technologies, even to the point of
inventing their own customized markup languages using XML.
In the following chapter, we will look at some specific XML
technologies used in the financial markets and create programs in a
new industry XML protocol called FIXML.

CREATING A MARKUP LANGUAGE

As we mentioned, XML allows us to represent the contextual
meaning of the data we wish to describe and transmit. This is done
through the definition of customized tags. As long as the
application that sends an XML message and the application that
receives it agree on what these tags mean, they can communicate
and exchange data. If you are not familiar with markup languages,
this idea of inventing or defining our own tags may seem
somewhat vague. So let’s take a quick look at an example.

Imagine for a minute that we could invent our own markup
language for describing a trade. What kind of tags might we want
to invent, and how would an XML document written with these
tags look? Intuitively, we would first probably describe the
information structure of a trade:

Trade Information

Exchange
Ticker symbol
Buy/sell
Quantity
Price

302 Advanced VB.NET

Team-LRN

Trade Information

Clearing firm
Trader
Time
Etc.

Now that we have listed the information about a trade, let’s
define a markup language using XML tags to describe it and then
rewrite our trade in that language. We will call our new markup
language FMML—the Financial Markets Markup Language,
pronounced “fimmel.” In the same way that a variable in
VB.NET should be named using a naming convention, which
describes the data held in the variable, our FMML tags should
represent the contextual meaning of the data being held.

So the tag for a trade should probably be named ,Trade . .
The tag for the exchange name should probably be ,Exchange . .
And so on. Simple, right? It is exactly this simplicity that makes
XML so popular. It is a completely intuitive way to describe data.
Before we go ahead and write our trade using these tags, we must
consider onemore thing. It may be possible that a FMMLdocument
representing a trade may at times consist of more than one trade.
For example, wemaywant to describe a spread trade, which would
have two legs. So we will need a root tag, or a root element, within
which we can place a trade or trades. Let’s call our root element
<Tradedoc> for trade document.

Now we are ready to describe our trade in XML using our
FMML tags.

<?xml version=’1.0’ ?>
<Tradedoc>
<Trade>

<Exchange Acronym=’FMEX’/>
<Ticker>IBMDP</Ticker>
<BuySell Type=’Buy’/>
<Quantity>10</Quantity>
<Price Type=’Market’/>
<ClearingFirm>001</ClearingFirm>
<Trader>Ben</Trader>
<Time>3/6/2003 1:45:06 PM</Time>

</Trade>
</Tradedoc>

XML 303

Team-LRN

Again, so far we have simply invented our own markup tags
that represent the contextual meaning of the data in a trade. Let’s
take a closer look at the rules of XML using this particular
document or message, which is written in FMML, because the rules
of XML are very strict.

On the CD a file named sampleXML.xml contains the XML
message shown above. Double-clicking on this file will cause
it to open in MS Internet Explorer (see Figure 18.1. Well-formed
XML documents such as this one will successfully open in
Internet Explorer. XML documents that are not well formed will
generate an error statement in the Internet Explorer window.
Fortunately the XML document we created is both well formed and
valid.

F I G U R E 18.1

304 Advanced VB.NET

Team-LRN

Well-Formed XML Documents

Every XML document must be well formed. A well-formed XML
document follows all the structural rules for XML, and make no
mistake, XML definitely does not allow ambiguous structure.
This is because part of the information contained in an XML
message has to do with how different elements relate to one
another. If the structure is ambiguous, so is the information. A clean
and consistent structure is what allows XML documents to be
processed as data structures or trees, as we will briefly describe
later. Programs that intend to process XML, called parsers, will
reject any message that does not follow the structural rules for
beingwell formed. Among themost important rules are that XML is
case-sensitive and that unclosed tags and overlapping tags are
not permitted.

Every start tag must have a corresponding end tag. The start
tag begins an enclosed area of text, known as an item, according to
the tag name. <Ticker> is a start tag. </Ticker> is an end tag. The
element, defined by a tag, ends with the end tag. As we will point
out later, XML tags may also include one of a list of attributes
consisting of an attribute name and an attribute value.

A tag that opens inside another tag must close before the
containing tag closes. For example, take a look at this sequence:

<ClearingFirm>001<Trader>Ben</ClearingFirm>
</Trader>

Obviously this XML message is not well formed because <Trader>
opens inside <ClearingFirm> but does not close prior to the closing
tag </ClearingFirm>. Put differently, the structure of an XML
document must be strictly hierarchical.

Assuming a particular XML message is, in fact, well formed,
we can turn our attention to whether or not it is valid. Just because
an XML document is well formed does not mean it is valid. Making
sure our XML document is well formed is only half the battle. The
other half is validation.

Valid XML Documents

When the XML tags in a well-formed document are queried for
their meanings, we say the document is being validated. A well-
formed XML message simply means that it has met all the syntax

XML 305

Team-LRN

requirements, whereas a valid XML message means that both the
sending and receiving parties are able to correctly identify the
document’s content according to an agreed-upon set of tag
definitions.

Earlier in the chapter, we defined XML as a syntax, because it
is not truly a programming language. It is a plain markup
language; we developers make up the tags and the definitions
associated with those tags. The set of tag names that we came up
with to describe a trade we gave the name FMML. In this way
FMML can be thought of as a dialect of the XML language. FMML
is a specific set of XML tags with their respective meanings.

Eventually, if we intend to transmit our FMML trade
document to another application over a network or over the
Internet, we will need to make sure that the tag names are used
correctly with respect to our FMML definition. That is, we must
speak the dialect correctly. We could not, for example, use a tag
names <ExpMonth>, because it is not part of FMML as we defined
it. Furthermore the application that receives our FMML message
must be able to understand the FMML dialect as well. As long as
the receiver of our message understands FMML, we can
communicate using this dialect. If we sent our FMML message to
a widget factory for example or some other non-FMML speakers,
they would not be able to read it.

When sending or receiving an XML document, both parties
must agree on themeaning of the XML tags; that is, theymust agree
on the dialect. Just because we are placing the number of contracts
in a trade within a <Quantity> tag does not mean that the server
receiving our document will understand the contents of the
<Quantity> element. What we need then is a system that both the
sender and receiver can use to validate the meaning of the tags. Of
course, these types of systems have already been developed.

There are two different methods used to validate XML
documents—document type definition (DTD) and XML schema.
The system we will look at is DTD.

The purpose of a DTD is to define the legal building blocks of
an XML document. It defines the document structure along with a
list of acceptable elements and tags. In addition to defining names
for tags, a DTD defines the business rules or valid values that may

306 Advanced VB.NET

Team-LRN

be contained within the tags. As we will see, a DTD can be an
external reference.

If several financial institutions and exchanges get together and
agree on a dialect, or DTD, they can communicate between
themselves using that dialect of XML. As you can imagine then,
DTDs are very powerful. They define industry standards for the
meanings and business rules of an XML document. Earlier in this
chapter we mentioned that XML tags mean nothing to the
computer. But to people, they mean a lot. Technology professionals
of entire segments within the financial markets industry meet and
define DTDs that become the standard within their particular
domain. Any XML message creator who sends an XML document
based on the agreed-upon DTD can be assured that the recipient of
the document will be able to read it. This is one of the main
advantages of using XML to transfer data. It allows individual
firms or even entire industries to create their own customized
markup language.

Again, in the following chapter, wewill look at a few examples
of DTDs for financial markets. But for right now, let’s take a look at
how a DTD validates an XML document.

DOCUMENT TYPE DEFINITION

Seen from a DTD point of view, all XML documents are made up
of simple building blocks—elements, tags, attributes, entities,
PCDATA, and CDATA.

Elements

Elements are the main building blocks of XML documents.
Examples of XML elements that we have looked at are <Trade> and
<Ticker>. Elements can contain text, can contain other elements, or
can be empty.

Tags

Tags are used to mark up elements. A starting tag like <Ticker>
marks up the beginning of an element, and an ending tag like

XML 307

Team-LRN

</Ticker> marks up the end of an element. Furthermore XML
permits empty tags, denoted by a slash before the final right-angle
bracket in the tag like this <Ticker/.. This tag opens and closes in
one statement. Empty tags of this sort may have within them
attributes and attribute values.

Attributes

Attributes provide extra information about elements and are
always placed inside the starting tag of an element. Attributes
always come in name-value pairs and are allowed to be empty if
not supplied at all. However, XML does not allow naked attribute
values. Attribute values must be in quotes. For example, we allow
the <BuySell> tag to take on an attribute of either Buy or Sell:

<BuySell Value=‘Buy’/>.

Entities

Entities are variables used to define common text or characters.
Entities are then expanded when an XML parser parses a
document. For example, because they are special characters for
XML, <, >, &, “, and ‘ must be represented by special-character
entities. An XMLmessage using, say, the double-quote character in
text enclosed in a tag would not be well formed. Correctly designed
XML parsers will produce an error for such input. The following
entities are predefined in XML:

Entity References Character

< <
> >
& &
" "
' "

PCDATA

PCDATA means parsed character data. Character data is the text
found between the start tag and the end tag of an XML element.
PCDATA is text that will be parsed by a parser. Tags inside the text
will be treated as markup, and entities will be expanded.

308 Advanced VB.NET

Team-LRN

CDATA

CDATA means character data. CDATA is text that will not be
parsed by a parser. Tags placed inside the text will not be treated as
markup, and entities will not be expanded.

Parsers

Aswe discussed previously, an XMLmessage’s structure should be
validated against a DTD. This is done through the use of a parser, a
program that actually conducts the validation and reads the data. A
parser that has access to a DTD guarantees that all the required
elements and attributes are present in an XML document according
to the DTD. As with XML itself, the rules for validation are very
strict.

XML validation is order-sensitive, and elements must appear
in the same order as they are specified in the DTD. Additional fields
may not be added without first defining them in the DTD or in the
XML message itself. There are two methods for parsing and
processing XML documents: the document object model (DOM)
and the simple API for XML (SAX) model. We will employ a SAX
parser in an example program later.

A parser using DOM reads the entire XML document into a
hierarchical tree structure. A tree is a nonlinear, two-dimensional
data structure capable of holding the elements of an XML message
in nodes. The root node is the first node of the tree and corresponds
to the root element in an XML document. Every other element is a
child of the parent root node. Unlike the tree-based structure in
DOM, SAX is event-based. SAX parsers notify our application of a
stream of parsing events. Since both DOM and SAX are widely
standardized and supported, developers have a choice of free,
high-quality, third-party parsing software.

As wewill see, classes for creating and reading XMLmessages
are found in the System.XML namespace. For now let’s take a look
at the DTD for FMML and gain an understanding of how a parser
validates a FMML message.

<?xml version=’1.0’ encoding=’us-ascii’?>

<!ELEMENT Tradedoc (Trade+)>

XML 309

Team-LRN

<!ELEMENT Trade (Exchange,Ticker,BuySell,Quantity,Price,ClearingFirm,Trader,

Time)>

<!ELEMENT Exchange (#PCDATA)>

<!ELEMENT Ticker (#PCDATA)>

<!ELEMENT BuySell (#PCDATA)>

<!ELEMENT Quantity (#PCDATA)>

<!ELEMENT Price (#PCDATA)>

<!ELEMENT ClearingFirm (#PCDATA)>

<!ELEMENT Trader (#PCDATA)>

<!ELEMENT Time (#PCDATA)>

<!ATTLIST Exchange Acronym (CBOE|ISE|BOX|AMEX|FMEX) #REQUIRED>

<!ATTLIST BuySell Type (Buy|Sell) #REQUIRED>

<!ATTLIST Price Type CDATA #FIXED "Market">

Let’s go through line by line and describe what is going on.

<!ELEMENT Tradedoc (Trade+)>

This line specifies that this DTD is meant to validate an XML
message called a Tradedoc and that a Tradedoc is made up of at
least one element named Trade.

<!ELEMENT Trade (Exchange,Ticker,BuySell,Quantity,Price,ClearingFirm,Trader,

Time)>

Here we can see that a <Trade> element contains eight child
elements. No other elements are allowed.

<!ELEMENT Exchange (#PCDATA)>
<!ELEMENT Ticker (#PCDATA)>
<!ELEMENT BuySell (#PCDATA)>
<!ELEMENT Quantity (#PCDATA)>
<!ELEMENT Price (#PCDATA)>
<!ELEMENT ClearingFirm (#PCDATA)>
<!ELEMENT Trader (#PCDATA)>
<!ELEMENT Time (#PCDATA)>

These lines in the DTD specify the children within a Trade tag in the
order in which they must be supplied. The #PCData notation
specifies that the contents of each tag are to be parsed character
data. This is a bit misleading because it suggests that the contents of
XML tags are data-type-specific like numbers, strings, and dates.
XML is not data-type-specific. Rather, think of character data as the
text found between the start tag and the end tag of an XML element
and nothing more. The DTD has no way to define an element’s data
type. In the FMML DTD above, the <Ticker> element is defined to

310 Advanced VB.NET

Team-LRN

be an empty element with an attribute named type of PCDATA.
Parsed character data means that the parser reads the data ex-
tracted from the tag.

The DTD up to this point has only specified which elements
along with their children and tag names must be found in the XML
document, written in our made-up language called FMML. The
DTD has done nothing yet to help us determine whether good
information is contained in the tags. When simple business rules
need to be applied, attributes and attribute value lists may be
included. XML attributes can be added to elements if more detailed
information needs to be known about them. For example, the
<Exchange> tag can include an attribute to give us more
information on which exchange we are dealing with, such as
CBOE, ISE, or AMEX.

An XML element can contain as many attributes as needed.
The <Exchange> element has a single attribute as described in the
DTD and is known as Acronym.

<!ATTLIST Exchange Acronym (CBOE|ISE|BOX|AMEX|FMEX)
#REQUIRED>

The Acronym attribute will be validated against a set of legal
values: CBOE, ISE, BOX, AMEX, and FMEX. (As we will later see,
FMEX is the Financial Markets Exchange, a simulated, hypothetical
exchange we can communicate with over the Internet using FMML
to place orders and receive fills.) Notice that enumerated values are
contained in an open-close set of parentheses and are separated by
the pipe character, |. Also notice that this list of enumerated values
does not need to be in single or double quotes; in XML everything is
a string.

The <BuySell> and <Price> tags have attributes as well:

<!ATTLIST BuySell Type (Buy|Sell) #REQUIRED>
<!ATTLIST Price Type CDATA #FIXED "Market">

The <BuySell> tag has a required Type attribute, which can take on
the value of either Buy or Sell. The <Price> tag’s fixed Type
attribute can only take on the value “Market”. That is, according to
the definition of FMML, only market orders are permissible. So
limit or stop orders are not allowed.

XML 311

Team-LRN

The attribute type can have the following values:

Value Description

CDATA The value is character data
(X|Y| . . .) The value must be one from an enumerated list
ID The value is a unique ID
IDREF The value is the ID of another element
IDREFS The value is a list of other IDs
NMTOKEN The value is a valid XML name
NMTOKENS The value is a list of valid XML names
ENTITY The value is an entity
ENTITIES The value is a list of entities
NOTATION The value is a name of a notation
xml: The value is a predefined XML value

The default value of an attribute can be:

Value Description

Value The default name of the attribute
#REQUIRED The attribute value must be included in the element and is not optional
#IMPLIED The attribute is optional
#FIXED value The attribute value is fixed

For the sake of simplicity, our FMML DTD only deals with
PCDATA. Although there is a lot more to XML than we can fit into
this chapter, the FMMLDTDwill be sufficient to validate messages,
in the form of trades, that we will send over the Internet, as long as
we include the name and location of the .dtd file in our FMML
message.

The FMML.dtd file we will use to validate our FMML
messages will actually be external to the XML documents we create
and send. External DTDs can exist as flat files both on the local
machine and on the local network or as a uniform resource locator
(URL) on the Internet. Whatever the case, DTDs usually exist as
publicly available, human readable ASCII files.

In our XML messages we will need to specify the name and
location of the DTD against which it should be validated by the
receiving parser. If the DTD is located in the current folder, the
following syntax should be included in the XML document:

<!DOCTYPE Tradedoc SYSTEM ’fmml.dtd’>

312 Advanced VB.NET

Team-LRN

If needed, the entire path to the .dtd file can be specified—for
example, C:\ModelingFM\xml\fmml.dtd. If the DTD is public as
in the FMML case, meaning that it is available on the Internet, the
syntax will be:

<!DOCTYPE Tradedoc SYSTEM ’http://yorkville.rice. _
iit.edu:8100/FMML.dtd’>

When a DTD exists as a URI, it becomes especially powerful.
Assuming that all partners who exchange XML messages can
access the DTD, they all can use it to create and validate their XML
documents anywhere in the world. Let’s take a look.

CREATING XML DOCUMENTS

Before we create an Internet application, let’s first develop a simple
VB.NETapplication that will write an XML document and save it to
the C:\drive.

Step 1 In VB.NETcreate a newWindows application named
XMLexample.

Step 2 On your Form1, add controls to build the GUI shown
in Figure 18.2.

There should be two combo boxes on your form. Name them
cboExchange and cboBuySell. In the Collection property of
cboExchange, add the elements CBOE, ISE, BOX, AMEX, and
FMEX. In the Collection property of cboBuySell, add the elements
Buy and Sell. Give the text boxes the appropriate names: txtTicker,
txtQuantity, txtPrice, txtClearingFirm, and txtTrader.

Step 3 To the Button1_Click event, add the following code:

Imports System.IO

Public Class Form1

Inherits System.Windows.Forms.Form

[Windows Form Designer Generated Code]

Private Sub Button1_Click(ByVal sender As ...) Handles Button1.Click

Dim strTradeDoc As String

strXMLtrade = "<?xml version = ’1.0’?>"

strXMLtrade &= "<Tradedoc>"

strXMLtrade &="<Trade>"

strXMLtrade &= "<Exchange Acronym = ’" & cboExchange.Text & "’/>"

strXMLtrade &= "<Ticker>" & txtTicker.Text & "</Ticker>"

XML 313

Team-LRN

strXMLtrade &= "<BuySell Type = ’" & cboBuySell.Text & "’/>"

strXMLtrade &= "<Quantity>" & txtQuantity.Text & "</Quantity>"

strXMLtrade &= "<Price Type = ’" & txtPrice.Text & "’/>"

strXMLtrade &= "<ClearingFirm>" & txtClearingFirm.Text & "</ClearingFirm>"

strXMLtrade &= "<Trader>" & txtTrader.Text & "</Trader>"

strXMLtrade &= "<Time>" & Now & "</Time>"

strXMLtrade &= "</Trade>"

strXMLtrade &= "</Tradedoc>"

Dim objWriter As New StreamWriter("C:\ModelingFM\myFirstXMLdoc.xml")

objWriter.Write(strXMLtrade)

objWriter.Close()

End Sub

End Class

Step 4 Run the program. Your results should look like the
screen shown in Figure 18.3.

Step 5 Now find the file namedmyFirstXMLdoc.xml in your
C:\ModelingFM folder and double-click on it, which
will cause it to open in MS Internet Explorer.

F I G U R E 18.2

314 Advanced VB.NET

Team-LRN

If your XML document is well formed, it will successfully
open. If it is not well formed, Internet Explorer (IE) will generate an
error statement.

SENDING XML MESSAGES

Creating an XMLmessage and saving it to a file is not really all that
exciting. After all, XML was designed for communication. Let’s
change our program so we can send our FMML trade over the
Internet and receive a trade confirmation. We will be sending our
pseudo trades to the Financial Markets Exchange, FMEX, which is a
server that will receive FMML “trades,” post them in a database,
and send back FMML trade confirmations. Once you have placed
your trade, you can see whether the FMEX has received it at http://
yorkville.rice.iit.edu:8100/servlet/fmex.GetTrades. This website shows

F I G U R E 18.3

XML 315

Team-LRN

the contents of the FMEX database. So if your FMML document
was successfully received, it will be viewable on this site.

Step 6 To communicate with the FMEX over the Internet, we
will need to create a few objects that are based upon
classes found in the System.Net and System.XML
namespaces. Add the Imports System.Net and
Imports System.XML code at the very top of the
Form1 code window. In the general declarations
section of the Form1 code window, declare the
following objects:

Dim myUrl As Uri
Dim myReq As WebRequest
Dim myRes As WebResponse
Dim myReader As XmlTextReader

A URI is an object representation of a URL. A WebRequest object,
found in the System.Net namespace, makes a request to a URI over
the Internet. AWebResponse objects receives amessage from aURI.

An XmlTextReader object, found in the System.XML name-
space, gives us fast, read-only access to an XML stream. So by using
an XMLTextReader to read a stream, we will be implementing a
form of SAX parser to make sure the XML message is well formed.
However, an XmlTextReader object will not perform data
validation against a DTD. To perform data validation, we could
use an XmlValidatingReader object, but creating a full, validating
parser is beyond the scope of this chapter.

Step 7 Change the Button1_Click event to include the
following code:

Private Sub Button1_Click(ByVal sender As ...) Handles Button1.Click

Dim strCurrentTag, strStatus, strBuySell, strQty, strTicker, _

strPrice, strDate, strXMLtrade As String

strXMLtrade = "<?xml version = ’1.0’?>"

strXMLtrade += "<!DOCTYPE Tradedoc SYSTEM _

’http://yorkville.rice.iit.edu:8100/FMML.dtd’ > "

strXMLtrade += "<Tradedoc>"

’ This code is the same as before.

strXMLtrade += "</Tradedoc>"

myUrl = New _

Uri("http://yorkville.rice.iit.edu:8100/servlet/fmex.XMLTrade?xmlfile=" _

& strXMLtrade)

myReq = WebRequest.Create(myUrl)

316 Advanced VB.NET

Team-LRN

Try

myRes = myReq.GetResponse

myReader = New XmlTextReader(myRes.GetResponseStream())

Do While (myReader.Read())

If myReader.NodeType = XmlNodeType.Element Then

strCurrentTag = myReader.Name

End If

If myReader.NodeType = XmlNodeType.Text Then

Select Case strCurrentTag

Case "Status"

strStatus = myReader.Value

Case "BuySell"

strBuySell = myReader.Value

Case "Quantity"

strQty = myReader.Value

Case "Ticker"

strTicker = myReader.Value

Case "Price"

strPrice = myReader.Value

Case "Time"

strDate = myReader.Value

End Select

End If

Loop

myReader.Close()

Catch exc As Exception

MsgBox(exc.Message)

Exit Sub

End Try

lblConfirm.Text = strStatus & " " & strBuySell & " " & strQty & " _

" & strTicker & " at " & strPrice & " at " & strDate

End Sub

Step 8 One last thing: Add a label named lblConfirm to the
bottom of your Form1.

Step 9 Run the program (see Figure 18.4).

You can view the FMEX server at http://yorkville.rice.ii-
t.edu:8100/servlet/fmex.GetTrades. When the server receives your
“trade,” it will be posted on this website.

XML DATA SOURCES

ADO.NET provides additional functionality that allows us to
convert data in a database into XML. VB.NET DataSet objects
provide methods that create XML documents from a data table and
that also can convert XML data into a data source. This is
accomplished through the use of the GetXML(), WriteXML, and
ReadXML() member methods. Let’s look at a quick example:

XML 317

Team-LRN

Step 1 Open a new VB.NET Windows application named
XMLdatasource.

Step 2 To your Form1 add a text box with the multilane
property turned to True and with a vertical scroll bar.
Also add a button and a data grid. Leave these
controls with their default names.

Step 3 Add the following code to the Form1 code window:

Imports System.Data.OleDb

Public Class Form1

Inherits System.Windows.Forms.Form

[Windows Form Designer generated code]

F I G U R E 18.4

318 Advanced VB.NET

Team-LRN

F I G U R E 18.5

XML 319

Team-LRN

Private Sub Button1_Click(ByVal sender As ...) Handles Button1.Click

Dim myConnect As New _

OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;Data _

Source=C:\ModelingFM\Options.mdb")

Dim myAdapter As New OleDbDataAdapter("Select * From OptionTrades, _

myConnect)

Dim myDataSet As New DataSet()

myConnect.Open()

myAdapter.Fill(myDataSet, "myData")

DataGrid1.DataSource = myDataSet

DataGrid1.DataMember = "myData"

myDataSet.WriteXml("OptionTrades.XML")

TextBox1.Text = myDataSet.GetXml()

myConnect.Close()

End Sub

End Class

Step 4 Run the program. It should look like Figure 18.5.

SUMMARY

This chapter presented the basics of the XML language, which is
really a metalanguage. We used XML to create our own messaging
protocol, which we named FMML. All XML messages should be
both well formed and valid according to some DTD. In the chapter
we broke down the elements of the FMML.dtd file to gain an
understanding of elements, tags, attributes, entities, CDATA, and
PCDATA. Furthermore, we briefly discussed parsers, which are
programs that read XML files. Finally, we used some of VB.NET’s
System.Net and System.XML namespace objects to communicate
over the Internet with a server using the FMML protocol.

In the following chapter we will look at some real-world XML
protocols used every day in the financial markets.

320 Advanced VB.NET

Team-LRN

PROBLEMS

1. What is a metalanguage?
2. What is the difference between a well-formed XML mess-

age and a valid one?
3. What is FMML, and how is it different from XML?
4. What is a DTD?
5. What objects are contained in the System.Net and

System.XML namespaces?

XML 321

Team-LRN

PROJECT 18.1

Trade confirmations received from FMEX should be posted in the
OptionTrades table of the Options.mdb database. Create a VB.NET
Windows application that inserts the necessary information into
the appropriate columns in the table.

PROJECT 18.2

As trades are made on FMEX, your portfolio will change. Create a
VB.NETapplication that will hold call and put objects in a portfolio.
Be sure to add the functionality necessary to keep track of your
portfolio statistics in real time.

322 Advanced VB.NET

Team-LRN

C H A P T E R 19

XML Protocols in
Financial Markets

Although electronic trading has become widespread over the last
decade, communication between institutional trading firms is still
often done using such last-millennium technologies as the
telephone. Over the coming years, the advantages of new
technologies such as XML will change the way all companies do
business, but especially those involved in the financial markets
since the details of virtually all tradable instruments can be
represented and communicated in digital format. Furthermore, as
we have argued in this book, financial industry firms will
increasingly use electronic trading systems (to select trades and
manage portfolios) and electronic markets (to execute trades). The
benefits of an entirely electronic platform will pave the way for
straight-through processing (STP). STP will require the trans-
mission of trade information across electronic networks using a
common messaging protocol.

STP is a set of business processes that will one day achieve the
goal of automating end-to-end trade processing for all financial
instruments, thereby streamlining back-office activities and low-
ering trading costs. Thanks to the advent of web services
technology and messaging protocols, the focus of attention with
regard to STP is moving away from issues relating to connectivity
between software applications and more toward the business
content of the information being exchanged.

As we showed in the previous chapter, a messaging protocol
such as FMML can be created and defined as a standardized way of

323

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

communicating trade information between two market partici-
pants without the necessity of human intervention. Processes such
as this, where the messaging protocol is not identical to a
proprietary data description methodology, are the very definition
of the issues around connectivity and system interoperability.
System interoperation permits individual market participants to
share the fixed costs of technological infrastructure development as
well as the benefits of subsequently lower transaction costs.

Within the financial markets industry, several XML protocols
have been developed for system interoperation within specific
industry segments. These XML standards provide a framework for
encoding information relating to different parts of the industry and
are being promoted by consortiums and organizations that set
document definitions in the form of XML DTDs or schemas. As we
learned in the previous chapter, a DTD describes the valid structure
and sequence of a message spoken in a particular dialect of XML.
The most interesting of these XML protocols or dialects used in the
financial markets are:

^ FIX/FIXML. FIXML is the XML version of FIX.
^ FpML. The Financial Products Markup Language.
^ Swift/SwiftML. SwiftML is the XML version of Swift.
^ RIXML. The Research Information Exchange Markup

Language.
^ MDDL. The Market Data Definition Language.
^ FinXML.
^ SFXL. The Securities Financing Extensible Markup

Language.
^ OFX. Open Financial Exchange.
^ XBRL. The Extensible Business Reporting Language.
^ IFX. Interactive Financial Exchange.
^ IRML. The Investment Research Markup Language.
^ XFRML. The Extensible Financial Research Markup

Language.
^ MDML. The Market Data Markup Language.
^ WeatherML. The Weather Markup Language.
^ STPML. The Straight-through Processing Markup

Language.

324 Advanced VB.NET

Team-LRN

As you can imagine, an institution of any size may need to
support a multiplicity of standards within its trading, risk
management, and back-office systems. The most widely used of
the protocols mentioned above, however, are FIX, Swift, and FpML.
Both Swift, promoted by the Society for Worldwide Interbank
Financial Telecommunications, and FIX, promoted by FIX Protocol,
Ltd. (FPL), are currently non-XML protocols, but they are being
converted to XML formats known as SwiftML and FIXML,
respectively.

Furthermore, since there is obviously a fair amount of overlap
between the protocols listed, we will likely see convergence of the
standards over the coming years. In fact, the FPL and Swift
organizations have recently agreed to team up and merge their two
messaging standards into a single, ISO 15022 XML-based protocol.
[ISO 15022 is the current International Standards Organization
(ISO) standard that defines electronic messages exchanged
between institutions involved in the securities industry.] It is
hoped that the new XML protocol will combine FIX’s agility in
trade execution and Swift’s post-trade talents to further the goal of
straight-through processing.

Rather than delve into each of the listed protocols in depth, we
will briefly discuss FpML and then focus in more depth on FIXML,
leaving it to the reader to further investigate the others should the
need arise. Whatever the case, since all the other listed standards
are XML-based protocols, messages written in any of these formats
must be well-formed XML documents and valid according to their
respective DTDs.

FpML

The Financial Products Markup Language (FpML) is a freely
licensed XML protocol for trading complex over-the-counter
financial derivative instruments, including equity, interest rate,
and foreign exchange derivatives such as options, spots, forwards,
swaps, and swaptions. Eventually it is hoped that FpML will
automate the flow of information for electronic trading and
confirmations in all the types of negotiated OTC derivatives.

XML Protocols in Financial Markets 325

Team-LRN

Let’s take a look at a sample FpML message taken from the
FpML Version 2.0 documentation, which can be found at
www.FpML.org. As you will see, this document contains the
information about a forward rate agreement trade. In some areas
we have abbreviated less interesting content.

On May 14, 1991, ABN AMRO Bank and Midland Bank
entered into a forward rate agreement in which ABN AMRO was
the seller of the contract and Midland was the buyer. The terms of
the contract are as follows:

^ Effective date: 01/07/1991
^ Termination date: 01/17/1992
^ Notional amount: CHF 25,000,000
^ Fixed rate: 4.00%
^ Day count fraction: Actual/360

Here is an XML representation of this OTC trade of a forward
rate agreement using the FpML protocol:

<?xml version="1.0" ?>

<FpML version="2-0" BusinessCenterSchemeDefault=http://www.fpml.org/...>

<trade>

<tradeHeader>

<partyTradeIdentifier>

<partyReference href="#MIDLAND" />

<tradeId tradeIdScheme="http://www.hsbc.com/...>123</tradeId>

</partyTradeIdentifier>

<partyTradeIdentifier>

<partyReference href="#ABNAMRO" />

<tradeId tradeIdScheme="http://www.abnamro.com/...>456</tradeId>

</partyTradeIdentifier>

<tradeDate>1991-05-14</tradeDate>

</tradeHeader>

<fra>

<buyerPartyReference href="#MIDLAND" />

<sellerPartyReference href="#ABNAMRO" />

<adjustedEffectiveDate id="resetDate">1991-07-17 _

</adjustedEffectiveDate>

<adjustedTerminationDate>1992-01-17</adjustedTerminationDate>

<paymentDate>

<unadjustedDate>1991-07-17</unadjustedDate>

<dateAdjustments>

<businessDayConvention>FOLLOWING</businessDayConvention>

<businessCenters>

<businessCenter>CHZU</businessCenter>

</businessCenters>

</dateAdjustments>

</paymentDate>

<fixingDateOffset>

326 Advanced VB.NET

Team-LRN

<periodMultiplier>-2</periodMultiplier>

<period>D</period>

<dayType>Business</dayType>

<businessDayConvention>NONE</businessDayConvention>

<businessCenters>

<businessCenter>GBLO</businessCenter>

</businessCenters>

<dateRelativeTo href="#resetDate">ResetDate</dateRelativeTo>

</fixingDateOffset>

<dayCountFraction>ACT/360</dayCountFraction>

<calculationPeriodNumberOfDays>184</calculationPeriodNumberOfDays>

<notional>

<currency>CHF</currency>

<amount>25000000.00</amount>

</notional>

<fixedRate>0.04</fixedRate>

<floatingRateIndex>CHF-LIBOR-BBA</floatingRateIndex>

<indexTenor>

<periodMultiplier>6</periodMultiplier>

<period>M</period>

</indexTenor>

<fraDiscounting>true</fraDiscounting>

</fra>

<party Id="MIDLAND">

<partyId>MIDLGB22</partyId>

</party>

<party id="ABNAMRO">

<partyId>ABNANL2A</partyId>

</party>

</trade>

</FpML>

Although this XML document is quite lengthy, you should be
able to not only read it but, based upon what we learned in the
previous chapter, also understand the underlying structure and
determine how it may be created in VB.NET and how it could be
sent to a URL over the Internet. Now let’s look in more depth at
FIXML.

FIX AND FIXML

The Financial Information Exchange (FIX) protocol is a public
domain, non-XML messaging standard targeted toward insti-
tutional trading of exchange-traded securities and derivatives. FIX
was originally designed by Salomon Brothers and Fidelity to
automate messages between themselves, but over the years it has
become widely used by most major market participants. Today FIX

XML Protocols in Financial Markets 327

Team-LRN

Protocol, Ltd. (FPL), an industry consortium, oversees the ongoing
development of FIX and FIXML, the XML version of the FIX
protocol.

FPL has designed FIX for the express purpose of commu-
nicating trades electronically and exchanging transaction data in
real time between exchanges, ECNs, FCMs, and broker-dealers.
Every day, FIX-compliant trading institutions and exchanges use
FIX to route and manage their flow of orders and confirmation
information more quickly and efficiently than prior or alternative
methods. The use of FIX messages greatly reduces the time and
expense necessary to perform transactions and transaction
processing in the financial markets. Due to its wide acceptance
by securities and derivatives exchanges as well as their member
firms, FIX is becoming a necessary and integral component of any
real-time trading system.

FIXML, on the other hand, is an attempt by the FPL
consortium to create an XML version of FIX. That is, the consortium
is aiming to rewrite the FIX protocol in XML. As we have learned,
since FIXML is an XML-based language, the definition of FIXML is
encompassed in a DTD that is available on the Internet, as we will
see shortly. Although FIXML is only now narrowly used in the
industry, FPL is designing it in such a way as to minimize effort and
expense for FIX-compliant firms to convert to it from their legacy
FIX-based systems. In general, FIXML simply takes FIX tag values
and represents them in XML format. The new FIXML messages
then are actually put inside the established FIX headers and
trailers. The result is that FIX firms can convert to FIXML by simply
adding an XML parser on top of their existing FIX engine.
Alternatively, FIXMLmessages can also stand on their own outside
the FIX framework.

Although FIXML messages are bigger and therefore require
more bandwidth than traditional FIX messages, the advantages of
using an XML format, and the additional functionalities it enables,
clearly outweigh the disadvantages. One of the biggest advantages
of the XML format is that it allows for interoperation between
FIXML systems and other similar standards such as OFX. Software
applications can easily pass fields through to connected systems
that use other DTDs to, for example, describe trades in terms of
price, quantity, and security name.

328 Advanced VB.NET

Team-LRN

As we have said, over the long run the use of XML formats,
like FIXML, SwiftML, and OFX, will motivate a convergence of the
various protocols. The ultimate prize will be a single dictionary for
the entire financial industry, whichwill clearly ease the transition to
straight-through processing.

As wementioned before, just as with any XML standard, there
is a corresponding DTD with FIXML. It is known as fixmlmain.dtd
and is available on the FPL website, www.FIXprotocol.org.

Before we dive in to creating a FIXML document, let’s take a
quick look at some peculiarities of FIXML. FIXML messages, of
course, require that the content of a message be ordered. That is, as
with any XML protocol, elements must be in a specific order. Also,
FIXML supports conditionally required content. So, for example,
options trades must contain the ,StrikePrice> element, whereas
futures trades do not. And lastly, FIXML makes use of certain
commonly used and well-known financial abbreviations. Here are
some examples:

Abbreviation Description

Amt Amount
Comm Commission
Comp Company
Curr Currency
DK Don’t know
Exch Exchange
Forex Foreign
Fut Futures
ID Identifier
IOI Indication of interest
Mkt Market
Opt Option
Ord Order
Px Price
Qty Quantity

In the following example, we will build a FIXML document
step-by-step, element-by-element, from the ground up. Further, we
will be able to modify this document for use with equity trades,
options trades, and futures trades. As with all XML messages,
FIXML documents start with headers, including the XML version
and the FIXML document type, which defines the DTD against
which a parser will validate the document.

XML Protocols in Financial Markets 329

Team-LRN

<?xml version=’1.1’ encoding=‘UTF-8’ ?>

<?DOCTYPE FIXML SYSTEM ’http://www.fixprotocol.org/specification/ _

fixml4.3v1.0.dtd’>

Next we add the root element ,FIXML> with opening and
closing tags.

<?xml version=’1.1’ encoding=’UTF-8’ ?>
<?DOCTYPE FIXML SYSTEM ’http:\... .dtd’>
<FIXML>
</FIXML>

According to the DTD, a <FIXML> element can contain one or
more <FIXMLMessage> elements. A <FIXMLMessage> must
contain one <Header> and one <ApplicationMessage>. The
<Header> element will contain the information about the parties
involved in a transaction. The <ApplicationMessage> element will
contain information about the transaction itself.

<?xml version=’1.1’ encoding=’UTF-8’ ?>
<?DOCTYPE FIXML SYSTEM ’http:\... .dtd’>
<FIXML>

<FIXMLMessage>
<Header>
</Header>
<ApplicationMessage>
</ApplicationMessage>

</FIXMLMessage>
</FIXML>

The <Header> element must contain a <Sender> and a
<Target> element. Optionally it can also contain an <onBehalfOf>,
<DeliverTo>, <SendingTime>, <PossDupFlag>, or <PossResend>
element.

<Header>
<Sender>
</Sender>
<Target>
</Target>
<SendingTime/>

</Header>

The <Sender> and <Target> elements must each contain
<CompID> and optionally a <SubID> and a <LocationID>.

330 Advanced VB.NET

Team-LRN

<Header>
<Sender>

<CompID></CompID>
<SubID></SubID>

</Sender>
<Target>

<CompID></CompID>
<SubID></SubID>

</Target>
<SendingTime/>

</Header>

We can complete the header by adding some data.

<Header>
<Sender>

<CompID>BVV</CompID>
<SubID>BEN</SubID>

</Sender>
<Target>

<CompID>BH</CompID>
<SubID>Bob</SubID>

</Target>
<SendingTime>20030203-9:30:00</SendingTime>

</Header>

Now that the <Header> is complete, we can turn our attention
to the <ApplicationMessage> content. The <ApplicationMessage>
element can contain one of several elements, including but not
limited to the following: <Advertisement>, <Indication>, <News>,
<Email>, <QuoteReq>, <Quote>, <Order>, <ExecutionReport>,
<DK_Trade>, <OrderModificationRequest>, <OrderCancelRe-
quest>, <OrderCancelReject>, <OrderStatusRequest>, <Settle-
mentInstructions>, <MarketData>, <MarketDataReq>, <Quote-
Cancel>, and <SecurityStatus>. For the purposes of this example,
we are sending an order.

<ApplicationMessage>
<Order>
</Order>

</ApplicationMessage>

The <Order> element must include tags for <ClOrdID>,
<HandInst>, <Instrument>, <Side>, <TransactTime>, <Order-

XML Protocols in Financial Markets 331

Team-LRN

Quantity>, and <OrderType>. Optionally, <Order> can also
include other tags such as <ClientID>, <ExecBroker>, <Account>,
<PrevClosePx>, <Currency>, <OrderDuration>, <Commission>,
<Rule80A>, <Text>, <ClearingFirm>, or <ClearingAcct>. For this
example we will include the required elements as well as the
optional <Currency> element.

Furthermore, the <Instrument> element will contain a
required <Symbol> element and may include one of the optional
elements such as <SymbolSfx>, <SecurityID>, <SecurityType>,
<SecurityExch>, and <Issuer>.

<ApplicationMessage>
<Order>

<ClOrdID></ClOrdID>
<HandInst />
<Instrument>

<Symbol></Symbol>
<SecurityType></SecurityType>

</Instrument>
<Side />
<TransactTime></TransactTime>
<OrderQuantity></OrderQuantity>
<OrderType></OrderType>
<Currency />

</Order>
</ApplicationMessage>

Now let’s add some parsed character data as well as some
attributes to our order elements.

<ApplicationMessage>

<Order>

<ClOrdID>12345</ClOrdID>
<HandInst Value="1"/>
<Instrument>

<Symbol></Symbol>

<SecurityType></SecurityType>

</Instrument>

<Side Value="1"/>
<TransactTime>20030203-9:30:00</TransactTime>
<OrderQuantity></OrderQuantity>

<OrderType></OrderType>

<Currency Value="USD"/>
</Order>

</ApplicationMessage>

332 Advanced VB.NET

Team-LRN

Let’s take a more in-depth look at the <Instrument> element.
The <SecurityType> element may contain elements corresponding
to the different tradable instruments, including <Equity>,
<FixedIncome>, <ForeignExchange>, <Future>, <MutualFund>,
<Option>, and <Warrant>. The format for a common stock trade
looks like this:

<Instrument>
<Symbol>IBM</Symbol>
<SecurityType>

<Equity Value="CS">
</SecurityType>

</Instrument>

The format for a call <Option> trade looks like the following
example. In this example, a put is a code “0” and a call is a code “1”.

<Instrument>
<Symbol>IBM</Symbol>
<SecurityType>

<Option>
<PutCall Value="1"/>
<Maturity>

<MonthYear>200304</MonthYear>
</Maturity>
<StrikePx>80.00</StrikePx>

</Option>
</SecurityType>

</Instrument>

Now let’s take a look at the finished FIXML document, which
incorporates the <Header> and the <ApplicationMessage> along
with some additional information for <OrderQuantity> and
<OrderType>. In this final message we have included the
<Instrument> element for the purchase of 10 IBM April 80 call
options at a limit price of $5.00.

<?xml version=’1.0’ encoding=’UTF-8’ ?>

<!DOCTYPE FIXML SYSTEM ’http://www.fixprotocol.org/specification/ -

fixml4.3v1.0.dtd’>

<FIXML>

<FIXMLMessage>

<Header>

<Sender>

<CompID>BVV</CompID>

XML Protocols in Financial Markets 333

Team-LRN

<SubID>BEN</SubID>

</Sender>

<Target>

<CompID>BH</CompID>

<SubID>Bob</SubID>

</Target>

<SendingTime>20030203-9:30:00</SendingTime>

</Header>

<ApplicationMessage>

<Order>

<ClOrdID>12345</ClOrdID>

<HandInst Value=’1’/>

<Instrument>

<Symbol>IBM</Symbol>

<SecurityType>

<Option>

<PutCall Value=’1’/>

<Maturity>

<MonthYear>200304</MonthYear>

</Maturity>

<StrikePx>80.00</StrikePx>

</Option>

</SecurityType>

</Instrument>

<Side Value=’1’/>

<TransactTime>20030203-9:30:00</TransactTime>

<OrderQuantity>

<OrderQty>10</OrderQty>

</OrderQuantity>

<OrderType>

<LimitOrder>

<Price>5.00</Price>

</LimitOrder>

</OrderType>

<Currency Value=’USD’/>

</Order>

</ApplicationMessage>

</FIXMLMessage>

</FIXML>

On the CD, the file sampleFIXML.xml contains the completed
code above. Try opening this file in Internet Explorer. Since this
FIXMLmessage is both well formed and valid, the only thing left to
do is to build a VB.NET application that creates FIXML messages.

This program mimics the FMML program in the previous
chapter and creates a FIXML document.

Step 1 In VB.NETcreate a new Windows application named
FIXMLexample.

Step 2 On your Form1, add controls to build the GUI shown
in Figure 19.1

334 Advanced VB.NET

Team-LRN

There should be two combo boxes on your form.
Name them cboExchange and cboBuySell. In the
Collection property of cboExchange, add the
elements CBOE, ISE, BOX, AMEX, and FMEX. In
the Collection property of cboBuySell, add the
elements Buy and Sell. Give the text boxes the
appropriate names: txtTicker, txtQuantity, txtPrice,
txtClearingFirm, and txtTrader.

Step 3 To the Form1 code window, add the following code:

Imports System.IO

[Windows Form Designer generated code]

Public Class Form1

Inherits System.Windows.Forms.Form

Private Sub Button1_Click(ByVal sender As ...) Handles Button1.Click

Dim strXMLtrade As String

strXMLtrade = "<?xml version=’1.0’ ?>"

F I G U R E 19.1

XML Protocols in Financial Markets 335

Team-LRN

strXMLtrade &= "<!DOCTYPE FIXML SYSTEM _

’http://www.fixprotocol.org/specification/fixml4.3v1.0.dtd’>"

strXMLtrade &= "<FIXML>"

strXMLtrade &= "<FIXMLMessage>"

strXMLtrade &= "<Header>"

strXMLtrade &= "<Sender>"

strXMLtrade &= "<CompID>" & txtClearingFirm.Text & "</CompID>"

strXMLtrade &= "<SubID>" & txtTrader.Text & "</SubID>"

strXMLtrade &= "</Sender>"

strXMLtrade &= "<Target><CompID>" & cboExchange.Text & "</CompID>

</Target>"

strXMLtrade &= "<SendingTime>" & Now & "</SendingTime>"

strxmlTRADE &= "</Header>"

strxmltrade &= "<ApplicationMessage>"

strXMLtrade &= "<Order>"

strXMLtrade &= "<ClOrdID>Test</ClOrdID>"

F I G U R E 19.2

336 Advanced VB.NET

Team-LRN

strXMLtrade &= "<HandInst Value=’1’ SDValue = ’" & cboBuySell.Text & "’/>"

strXMLtrade &= "<Instrument>"

strXMLtrade &= "<Symbol>" & txtTicker.Text & "</Symbol>"

strXMLtrade &= "<SecurityExchange Value = ’" & cboExchange.Text & "’/>"

strXMLtrade &= "</Instrument>"

strXMLtrade &= "<Side Value=’1’/>"

strXMLtrade &= "<TransactTime>" & Now & "</TransactTime>"

strXMLtrade &= "<OrderQtyData><OrderQty>" & txtQuantity.Text & _

"</OrderQty></OrderQtyData>"

strXMLtrade &= "<OrdType Value = ’1’ SDValue = ’" & txtPrice.Text & "’/>"

strXMLtrade &= "</Order>"

strXMLtrade &= "</ApplicationMessage>"

strXMLtrade &= "</FIXMLMessage>"

strXMLtrade &= "</FIXML>"

Dim objWriter As New StreamWriter("C:\ModelingFM\myFirstFIXMLdoc.xml")

objWriter.Write(strXMLtrade)

objWriter.Close()

End Sub

Step 4 Run the program (see Figure 19.2).

Since this program produces a well-formed and valid FIXML
document, you may view it in Internet Explorer.

SUMMARY

In this chapter we looked at some real-world XML protocols used
everyday in the financial markets. Specifically, we presented the
basics of the FpML and in more depth, FIXML. As with XML
messages, those written in FpML and FIXML must be both well
formed and valid according to their respective DTDs.

XML Protocols in Financial Markets 337

Team-LRN

PROBLEMS

1. What is the relationship between FIX and FIXML?
2. What is FpML primarily used for?
3. What are Swift and SwiftML?
4. Why is convergence of XML protocols likely?
5. What two pieces must every FIXML message contain?

What do these two elements represent?

338 Advanced VB.NET

Team-LRN

PROJECT 19.1

Create a VB.NET Windows application that accepts user inputs
regarding an OTC derivatives trade and builds a valid FpML
document. Your program should save this document as
myFirstFpMLdoc.xml.

PROJECT 19.2

The program in the chapter does not distinguish between stocks,
futures, and options. Create a VB.NET application that accepts
trade information from the user similar to the example program in
the chapter. Add a combo box so the user can select the product
type. Then build the correct FIXML message for the instrument
type selected according to the instructions in the chapter.

XML Protocols in Financial Markets 339

Team-LRN

This page intentionally left blank.

Team-LRN

S E C T I O N F I V E

Object-Oriented
Programming
Risk Management

In theory, there is no difference between theory and practice.
But, in practice, there is.

Jan van de Snepscheut

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

This page intentionally left blank.

Team-LRN

C H A P T E R 20

Unified Modeling
Language

As we hope you have been able to see over the last several
chapters, object-oriented programming allows us to break down
computer programs into separate objects in a very intuitive way. If
you were new to programming when you first opened this book,
you may very well have started with Chapter 3, fired up VB.NET,
and started to code. While this approach might work for simple
programs, it will certainly not work for larger ones. For example,
what if you were asked to create a large value-at-risk system to
monitor several automated trading systems. A project of this
magnitude is too big to immediately start programming. Clearly, a
good bit of planning would be required first.

In order to create larger applications, we should follow a
detailed planning process for program design. This process must
include a comprehensive analysis of the project requirements and
result in a design, or blueprint, of the objects to be used in the
program, as well as a plan for project completion. As you will no
doubt learn over your career as a financial engineer, quality time
spent on planning will save countless hours of coding and may
even prevent failure of projects.

Large software projects have large probabilities of failure. Very
rarely, if ever, do large software applications meet all the
requirements as planned on time and within budget. Proper
planning is the only way to ensure against failure before you start
to program. Furthermore, it is not enough just to plan; be sure to
have your designs and plans approved by management before you
build anything.

343

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

As described in Chapter 2, the Kumiega–Van Vliet Trading
System Development Methodology requires that we build an
objects and program document as well as gain management buy-in
prior to programming. This document should lay out all the objects
along with all their functionalities that will be needed to construct
the system. Again, the process should include requirements
analysis, to define the specifications of the software; object-oriented
analysis, to provide a framework within which all the objects can
cooperate to satisfy the requirements; and object-oriented design,
to lay out the class hierarchy. Fortunately, there is a graphical
language created expressly for this purpose—the UnifiedModeling
Language.

UNIFIED MODELING LANGUAGE

Although it’s also possible to describe a software system and its
design in words, most developers prefer to use pictures to help
visualize the system’s pieces and the relationships between them.
UML is a way to represent object-oriented applications using a
standard set of graphical notations. With UML we can create
blueprints in the form of diagrams before we start to program.
Planning with UML makes the entire software development
process much more structured and makes it easier to communicate
ideas about system architecture. UML is not, however, a project
management tool. Project management tools and software
coordinate the various parts of a software project into a time line
for completion. UML diagrams show, from an architectural
perspective, the objects and the interrelationships between objects
in a software application.

We can model just about any object-oriented application using
UML. By creating models first, we can assure ourselves not only
that trading algorithms are completely and correctly formulated,
but also that the thorny issues of object-oriented implementation
are worked out before construction begins and changes become
expensive. Blueprints of classes and codemodules, either drawn by
hand or built in a UML software suite, are much easier to change
than existing systems.

344 Object-Oriented Programming

Team-LRN

In fact, dozens of products are available that facilitate the
creation of UML diagrams. The most well-known UML design tool
is Rational Rose (www.rational.com). Using these tools, we can build
new applications or analyze existing code to reverse-engineer the
UML diagrams. At the extreme end, some software will even go so
far as to generate program code from UML diagrams, producing
most of a production application.

Large automated trading systems must be structured in a way
that facilitates error-free execution and a clear architecture so that
financial engineers can find and fix bugs quickly. UML helps us
visualize trading system design from a technology standpoint and
document the results of the modeling process. This visualization is
enabled through the use of UML’s twelve diagram types, which are
defined in three categories—model management, structural, and
behavior diagrams.

High-level model management diagrams lay out the way we
organize andmanage the components of an application and consist
of:

^ Model diagrams
^ Subsystem diagrams
^ Package diagrams

Structural diagrams are used to model the static structure of a
software application and consist of:

^ Class diagrams
^ Object diagrams
^ Component diagrams
^ Deployment diagrams

Behavior diagrams show the different behaviors of objects in
an application and consist of:

^ Use case diagrams
^ Sequence diagrams
^ Activity diagrams
^ Collaboration diagrams
^ State chart diagrams

Unified Modeling Language 345

Team-LRN

MODEL MANAGEMENT DIAGRAMS

The process of modeling a software application is a process of
breaking down a large system into smaller and smaller subsystems,
because as systems get larger, it becomes more andmore difficult to
understand how the pieces fit together.

Model management diagrams are high-level designs to
illustrate the organization and management of application
components. Model management diagrams describe how the
different pieces of a UML design will fit together. Subsequent
diagrams will refine the details, but for now model management
diagrams will incorporate all the other diagrams we will look at in
order to show how the system is structured.

Model Diagrams

Our model diagram follows the Kumiega–Van Vliet paradigm
presented in Chapter 2 of this book for developing automated
trading systems. Thus the whole trading system software design
process is defined by the models corresponding to each of the four
steps along the waterfall.

For each of the four models, as an example, subsets of the
twelve UML diagrams have been selected to show the relevant
areas of communication. In each of the four models, instances of all
the diagram types may be required, but nonetheless the focus will
be on the diagrams listed in Figure 20.1.

So, as shown in Figure 20.1, modeling of the algorithms for
trade selection will concentrate on structural diagrams and
package diagrams. Data and implementation models will focus
on package diagrams and behavior diagrams. Portfolio and risk
management models will focus on structural class diagrams as well
as behavior diagrams.

Subsystem Diagrams

Software systems are made up of subsystems. And subsystems are
made of packages. A subsystem diagram breaks down a model
diagram into the constituent subsystems of a software system and
provides a hierarchical view of a system’s overall structure.

346 Object-Oriented Programming

Team-LRN

As we saw in Chapter 2, the implementation of a trading
system must manage three concurrent processes—trade selection,
portfolio management, and risk management. So our subsystem
diagram organizes the models into these logical components.
Examples of the pieces of subsystems are shown in Figure 20.2.

Package Diagrams

Package diagrams break subsystems into packages of classes and
subpackages. Packages simplify complex class diagrams and group
together logically related program elements.

We draw packages as rectangles with small tabs on the top
right-hand side (see Figure 20.3). As we will see, lines of different
types show relationships between packages. We might say, for
example, that one package has a relationship with another package
if changes in one cause changes in the other.

F I G U R E 20.1

F I G U R E 20.2

Unified Modeling Language 347

Team-LRN

The three subsystems in our trading system are packages. We
can break down these subsystems further, into other subsystems
and classes.

The classes and subpackages in Figure 20.4 are connected by
relationships to illustrate the fact that classes send messages to one
another. We will look at these relationships in greater detail when
we examine structural diagrams. One of the arts of UML design is
to minimize the dependencies between classes, which will have the
result of reducing the impact of changing a class or package
definition.

Over the remainder of this chapter, we will not be able to
diagram all the aspects of a trading system in detail. From the
package diagram shown in Figure 20.4, however, and the
knowledge gained over the past chapters, you should be able to

F I G U R E 20.3

F I G U R E 20.4

348 Object-Oriented Programming

Team-LRN

piece together the elements and subsystems of a full trading
system. For this chapter, though, we will focus on a simplified
project implementing portfolio and risk management using value
at risk and UML. The project will encompass the class and
packages defined by the brackets in Figure 20.4. This project will
require that we define the packages and objects we will need to
build the application as well as specifications for how these objects
will interact with each other. The value-at-risk application will
present a subset of the features of UML, but will give you an
understanding of the steps necessary to create an objects and
program document with UML.

VALUE AT RISK

Value at risk (VaR) is a single number that estimates the possible
dollar loss on a portfolio of securities and derivatives over a specific
time horizon within a given confidence level. This VaR number
aggregates all the risks, including those that might offset each other,
in a portfolio into a single number so as to facilitate analysis of
hedging strategies and the discussions about risk with nonquant
personnel. In the different markets, there have always been specific
risk measurements, such as duration for bonds, delta for options,
and even the much-debated beta for stocks. With VaR, however, we
can estimate the aggregated risk of a portfolio containing positions
in each of these instruments.

According to VaR theory, losses greater than the VaR number
can be expected only with a specified probability. For example, a
large trading institution with several hundred positions in dozens
of markets may quantify its value at risk by saying that there is a 5
percent chance that the firm will lose more than $1.5 million over
the next month given the current portfolio.

As with most theories in finance, VaR is not without its
detractors. Indeed, it is important to understand the limitations of
VaR analysis. VaR does not estimate event risk, nor does it take into
account liquidity differences among the various constituents of a
portfolio. Furthermore, just about every model for calculating VaR
assumes that the portfolio under consideration will not change
over the time horizon. And lastly, VaR models also generally

Unified Modeling Language 349

Team-LRN

assume either that historical price movements contain information
about the future distribution of returns or that future returns will be
normally distributed, neither of which may be true. To overcome
the issues inherent in trying to predict the future, several methods
for calculating VaR have been proposed by industry professionals
and academics.

In general, the approaches to VaR calculation fall into three
main categories—delta normal or parametric, historical simulation,
and Monte Carlo simulation. As we will briefly explain, each of
these three approaches has its strengths and weaknesses.

Delta Normal Approach

Delta normal, or parametric, approaches to VaR define risk as the
standard deviation of a portfolio’s log returns. We have actually
examined a version of this approach in Chapter 10. Although they
are fast and straightforward, the quality of estimates generated by
delta normal VaR methodologies break down when instruments
with nonlinear payoffs, such as options, are added to the portfolio
or when nonnormal events exist in the distribution of returns.

Delta normal VaR usually assumes a normal distribution for
both the changes in market prices and the changes in portfolio
value, and the calculation is usually a simple transformation of the
estimated covariance matrix.

Delta normal methods work well for portfolios with a very
limited number of options positions. Generally these methods
incorporate options by replacing them with a delta-equivalent
position in the underlying stock, a process called mapping. That
is, an option on a stock is thought of as a position in the stock
according to the delta since for small changes in the stock price, the
option acts like the stock. So once we have made this replacement,
we can estimate the risk of the portfolio as a portfolio of stocks.
However, this replacement method typically misstates the risk
since delta itself changes with changes in the stock.

For many options positions, reliance solely on delta can be
misleading. Rather, delta and gamma together must be used to
predict changes in option prices given a change in the value of the
underlying stock. The error will likely be small, however, for VaR

350 Object-Oriented Programming

Team-LRN

computations done over short time horizons, because short
horizons tend to imply small movements in the stock. The
misstatement becomes significant, though, when measurements
are taken for longer horizons of, for example, 2 weeks or a month.
Larger changes in time result in larger changes in the price of the
underlying, and VaR estimates generated using a covariancematrix
should not be relied upon for portfolios with significant numbers of
positions in options.

Another issue related to delta normal methods and the
presence of options is the difficulty in incorporating random
changes in volatilities, which, of course, greatly affect the valuation
of options. In the end, historical and Monte Carlo simulation
methods are better for portfolios with complex or nonlinear
instruments.

Historical Simulation

Historical simulation expresses a hypothetical distribution of
portfolio returns. Each return is calculated as though today’s
portfolio were held on a day’s past market movements.

Given a portfolio, we can obtain the historical values of the
factors affecting that portfolio for the past, say, 5 years. Then we can
subject the current portfolio to the factor changes experienced over,
say, 1000 different rolling 22-day time periods within those 5 years
to arrive at a discrete distribution of hypothetical monthly returns.
Ranking these returns will allow us to find, for example, the 50th
worst loss, which is then the 1-month VaR at the 5 percent level.

Historical simulation methods work well on portfolios with
options because they recompute the entire portfolio value for each
outcome of the underlying factors. Furthermore, historical
simulations can easily be extended to include a distribution of
volatilities.

By recomputing based upon the existence of several factors,
historical simulation methods better estimate a distribution of
returns on portfolios with options. Moreover, the historical
simulation method is easy to implement as long as reliable
historical data is available. If time-series data for the relevant
factors is not available, implementation will be very difficult.

Unified Modeling Language 351

Team-LRN

While an improvement over parametric methods, historical
simulations are not a panacea. Although it is free from the
assumptions of the normal distribution, the historical time period
chosen limits the range of potential outcomes. The distribution of
portfolio values generated can be misleading if the historical
sample is not indicative of future values.

Monte Carlo Simulation

Monte Carlo simulation also calculates risk by building a histogram
of hypothetical returns. As opposed to historical simulation, Monte
Carlo simulation finds hypothetical returns by choosing returns at
random from a given distribution, the parameters of which may be
estimated by historical data. So Monte Carlo VaR methods are not
limited by actual historical returns. Furthermore, Monte Carlo
simulation can easily incorporate stochastic volatilities.

Given a portfolio, we can make assumptions about the
distributions of the underlying factors affecting that portfolio. Then
we can estimate the parameters of those distributions and run
thousands of scenarios to build a histogram of possible future
returns. For each scenario, we revalue the portfolio. As with
historical simulation then, the distribution of hypothetical returns
will allow us to rank the outcomes and find, for example, the 1-
month VaR at a specific probability.

As with the previous methods, Monte Carlo simulation is not
perfect. For one, Monte Carlo methods often require long
computation times, especially as the number of random variables
and the number of iterations increase. For two, financial engineers
must estimate the parameters of the distributions from which the
random values are being drawn, and these estimates may not be
indicative of the future distributions of factor movements. The
distribution of portfolio values generated by Monte Carlo
simulation depends upon these assumptions. Despite the caveats,
however, Monte Carlo is widely used in the industry for large
portfolios of positions containing complex, nonlinear derivative
instruments.

352 Object-Oriented Programming

Team-LRN

STRESS TESTING

Stress testing measures the impact of an abnormal market move on
a portfolio. Running abnormal scenarios allows us to quantify the
move’s effects on a portfolio, and if these effects are unacceptable,
the portfolio composition may need to be revised. Scenarios are
often historical in nature. For example, what would have happened
had this portfolio gone through the crash of 1987, or September 11?
What would happen if all our correlations go to 1? If our firm is
engaged in dynamic hedging or constant rebalancing of portfolios,
what would happen if a major shock occurred overnight and
market liquidity dries up? None of these scenarios is statistical in
nature, but clearly there are nonzero probabilities associated with
them that must be addressed.

Now let’s incorporate UML design techniques and Monte
Carlo simulation into a simple VaR calculator.

STRUCTURAL DIAGRAMS

Structural diagrams show the static architecture of a software
project.

Class Diagram

A full class diagram displays an overview of an entire system
including the constituent classes and the relationships between
them. However, class diagrams are static and only show what
relationships exist, but not when they happen.

UML notation for a class is a rectangle with three parts, one
each for the class name, the attributes, and the member methods or
functions. An individual class is represented in Figure 20.5. Here
Monte Carlo is the name of the class, and it represents the definition
of a Monte Carlo simulation object. The 2 and þ signs define the
private and public visibility of the attributes and methods.
Although not shown, # would define protected visibility.
MyMarket, CurrentPortfolio, dblIterations, and dblDaysAhead
are all private attributes of the Monte Carlo class. The dblDaysA-
head attribute, for example, will hold the time horizon of the

Unified Modeling Language 353

Team-LRN

simulation in terms of the number of days. DblIterations will hold
the number of times the simulation will run.

The member functions are listed in the bottom box and
include the property gets and sets. The signatures of the respective
methods are also shown outlining the input and output argument
types. The New() method, of course, is the constructor, and
StdNormRnd() is the function described in Chapter 5 that returns a
standard normal deviate. In this case the properties are all
WriteOnly, and so only sets are listed.

In addition to the classes themselves, we can also represent in
UML the class relationships. Relationships between classes are
shown as connecting links and come in five varieties—dependen-
cies, associations, composition, generalization, and aggregation.
These links should also define the relationship’s multiplicity rules,
which we will discuss shortly.

When a class has as a member another class, we say that it
depends on that class. This is then a dependency relationship and is
drawn as a dotted line with an arrow pointing to the containing
class. In the example shown in Figure 20.6, the Monte Carlo class
depends on the Portfolio class and has a constraint that the

F I G U R E 20.5

354 Object-Oriented Programming

Team-LRN

relationship not be empty. Of course, if there is no portfolio, there is
no value at risk to calculate. A constraint, written in braces {},
requires that every implementation satisfy a condition. As you can
see from Figure 20.6, as we begin to move outward and take a look
at the bigger picture, we may start to abbreviate or even omit
details at lower levels.

An association is the most basic relationship and in UML is
drawn as a line connecting the two classes. As Figure 20.7 shows,
an association relationship exists between the Portfolio class and
the Algorithms Package.

If a class exists only as a member of another class, then the
relationship is referred to as a composition within the containing
class. A composition is drawn as a line with a solid diamond at the
containing class end, as shown in Figure 20.8. In our trading system
example, the OleDbConnection, OleDbDataAdapter, and DataSet

F I G U R E 20.6

Unified Modeling Language 355

Team-LRN

classes, collectively referred to as a Data Package, will exist only as
members of the Market class.

A generalization is equivalent to an inheritance relationship
and is drawn as a line with a hollow arrow pointing to the base
class, as you can see in Figure 20.9. Inheritance—or in UMI-speak,
generalization—shows that Portfolio is a derived class of
HashTable, and of course inherits all the attributes and methods
of the parent. The Value property has also been added to the class
Portfolio.

An aggregation is a relationship in which several instances of
a class belong to a Collection class. An aggregation is drawn as a
line with a hollow diamond pointing to the collection. In Figure
20.10, an aggregation exists between Portfolio and Stock. The
asterisk near the Stock class and the 1 near the Portfolio class
represent the multiplicities. A single portfolio can have many
stocks. Thus there is a one-to-many relationship between Portfolio

F I G U R E 20.8

F I G U R E 20.7

356 Object-Oriented Programming

Team-LRN

and Stock. Since a Portfolio has Stocks as elements, the diamond is
positioned near the Portfolio box. We could also add a StockOption
to represent another type of element in a Portfolio.

The multiplicity is the number of instances of a class that may
be associatedwith a single instance of the class at the other end. The
following table describes the most common multiplicities.

Multiplicity Description

0..1 Zero or one instance
0..� or � Zero or more instances
1 One instance
1..� One or more instances

The class diagram in Figure 20.11 models the entire Monte
Carlo simulation application we will create later in the chapter. As
you can see, the central class is the Monte Carlo class.

F I G U R E 20.9

Unified Modeling Language 357

Team-LRN

Object Diagram

An object diagram is simply a snapshot of all the objects at any
given time. Object diagrams show instances of classes, and objects
come and go, sometimes rapidly. So object diagrams are useful for

F I G U R E 20.10

358 Object-Oriented Programming

Team-LRN

explaining very small project pieces with highly complicated
relationships, especially recursive ones. The object diagram in
Figure 20.12 instantiates the class diagram, replacing it with a
concrete example. Each rectangle in the object diagram corre-
sponds to a single instance of a class. Instance names are
underlined in UML diagrams. Class names are often omitted
from object diagrams since the meanings are usually clear.

Component Diagrams

A component diagram describes the physical units of a software
system and the dependencies between them. Software com-
ponents, such as the executable files and library files, are often
combined into a single system and as a result have relationships
and dependencies between them.

In UML, components are drawn as rectangular boxes, with
two smaller rectangles sticking out the left side. Dependencies are

F I G U R E 20.11

Unified Modeling Language 359

Team-LRN

dashed lines with arrows pointing from the client component to the
supplier component upon which it depends. The TraderAPI
component contains an interface, shown in Figure 20.13 as a
“lollipop.” The dependency relationship within this diagram
indicates that the .exe file component refers to services offered by
the TraderAPI component via its public interface.

Deployment Diagram

A deployment diagram illustrates the physical organization of
hardware in a system. Each node on a deployment diagram
represents a hardware unit, and communication relationships exist
between nodes. Nodes are drawn as three-dimensional boxes and
contain software components.

Since the VaR model we have been following does not require
any Internet or even LAN communication, we will show the
hardware structure of an automated order routing system. The

F I G U R E 20.12

360 Object-Oriented Programming

Team-LRN

deployment diagram shown in Figure 20.14 lays out the
communication relationships between the hardware components
involved in automated trade entry.

BEHAVIOR DIAGRAMS

A behavior diagram represents the different aspects of a system’s
behavior.

Use Case Diagram

A use case diagram describes from an outside observer’s point of
viewwhat a system does, but not how it does it. A use case explains
what happens when a hypothetical user or actor interacts with the
system. An actor is someone or something that initiates an
interaction with the system. Actually a use case is very much like a
scenario or a simple case study where an actor interacts with a
system and is provided services by it.

The picture shown in Figure 20.15 is a simplified run VaR
simulation use case. The actor is a financial engineer. The
connection between actor and use case is a communication.

Use case diagrams are helpful in determining system
requirements. In fact, new use cases often bring to light new
requirements as the system undergoes an evolutionary design cycle
and changes are made. Further, their simple, graphical notation
facilitates communication.

A simple use case diagram can be expanded with additional
features to display more information. The use case diagram in
Figure 20.16 expands the original VaR simulation diagram with
additional features for a simplified trading system. In this

F I G U R E 20.13

Unified Modeling Language 361

Team-LRN

expanded design, we could include the ability to place trades and
populate a portfolio.

Note again that the use case diagram does not represent any
sequence; it simply shows the list of scenarios. A system boundary
rectangle separates the system from the external actors—the
financial engineer and the exchange. The <<uses>> relationship
links use cases to additional ones, such as in the case Calculate
Portfolio Value in Figure 20.16. Uses relationships like the one

F I G U R E 20–14

362 Object-Oriented Programming

Team-LRN

shown are especially helpful when the same subtask can be
factored out of other use cases. In Figure 20.16, both Select Trades
and Run VaR Simulation use Calculate Portfolio Value as a subtask.
In the diagram, the uses relationship is drawn as a line from the
base use case to the used use case. Calculating the portfolio value is
not of the type Run VaR Simulation, but is a task that constitutes a
piece of the overall run simulation use case.

F I G U R E 20.15

F I G U R E 20.16

Unified Modeling Language 363

Team-LRN

Although not shown, extend relationships are also possible.
Extends indicate that one use case is a version or variation of
another use case. Extends are also drawn as lines with an
<<extend>> label. An extended case can be thought of as a subtype
of a use case.

Sequence Diagram

A sequence diagram describes the flow of messages as they are
passed from object to object. Whereas class diagrams describe a
static structure, sequence diagrams illustrate the nature and timing
of the interaction between classes.

Figure 20.17 is a sequence diagram for running a Monte Carlo
simulation. The object initiating the sequence of messages is a
Form1 GUI window. The sequence of events proceeds as we move
down the diagram, and the objects are displayed from left to right
according to when they become part of the sequence. The dotted
lines, called lifelines, show that the portfolio exists before the
Monte Carlo is run and continues to exist afterward. On the other
hand, the Monte Carlo object itself and the Market object cease to
exist after the simulation is completed, as denoted by the large Xs.

Message calls are represented by arrows from the sender to
the receiver’s lifeline. The activation bars, the hollow rectangles,
represent the length of time of the execution of the message. These

F I G U R E 20.17

364 Object-Oriented Programming

Team-LRN

bars indicate the scope of a method occurring in a particular object.
The dotted lines show return values coming back to the calling
object. Notice that myMonteCarlo issues a self-call to generate a
new random number.

So to populate the portfolio, Form1 creates stocks and adds
them to myPortfolio. A user, presumably a financial engineer,
inputs data into the GUI. Form1 creates myMonteCarlo and
myMarket. The GUI sends messages to myMonteCarlo pertaining
to the parameters of the simulation. Then myMonteCarlo gets the
volatility from the market, and finally the simulation runs and the
value-at-risk number is returned to the GUI.

Collaboration Diagram

In a large software system, objects have to collaborate, and so we
have collaboration diagrams. A collaboration in UML-speak is
an interaction between two classes. Collaboration diagrams,
while conveying the same information as the previous sequence
diagrams do, focus on the roles that objects play in the overall
scheme, as opposed to the sequence of messages being sent.

Each message in a collaboration diagram has a sequence
number. The top-level message is numbered 1. Messages at the
same level have the same decimal prefix but have suffixes of 1, 2,
etc., according to when they occur.

In Figure 20.18 the financial engineer, through the GUI,
collaborates with myMonteCarlo by means of a button click and
some property sets and the run method. Then myMonteCarlo
collaborates with myPortfolio via three property gets and the value
method. And myMonteCarlo collaborates with myMarket by
means of the volatility get method.

State Chart Diagram

State chart diagrams allow us to picture the life cycle of an instance
of a class and the timing of external events affecting it. State
diagrams consist mainly of two elements—states and transitions.
An object has states, which depend upon its current activity or

Unified Modeling Language 365

Team-LRN

condition, and transitions, which describe how the object responds
to outside influences.

An object performs an activity while in a particular state.
Whereas actions are usually thought of as processes that are
performed quickly, activities take much longer to process and may
be interrupted by external events. An event, which could be a
button click, or could be a system-generated event, or even could be
internally generated, causes a transition or change in the state of an
object.

As you can see in Figure 20.19, an object’s initial state is shown
as a black circle. Intermediate states are rounded rectangles, and
the end state is shown as a black circle with another hollow circle
around it. Transitions are arrows from one state to the next. A
description of the event that triggers a transition is usually written
beside the transition arrow.

Our example state chart diagram—Figure 20.19—illustrates
the states and transitions of the Monte Carlo object. After creation,
the object waits while the user enters a valid portfolio andmarket, a
number of iterations, and a confidence level. Then the simulation
executes. The setup and execution can be factored into four
nonoverlapping states: getting simulation data, getting market
volatility data, running the simulation, and calculating value at
risk.

F I G U R E 20.18

366 Object-Oriented Programming

Team-LRN

While in its running-the-simulation state, the Monte Carlo
object does not wait for outside events to trigger a transition to the
next state. The completion of the running simulation activity causes
its transition to the subsequent state.

F I G U R E 20.19

Unified Modeling Language 367

Team-LRN

ACTIVITY DIAGRAM

An activity diagram is very much like a flowchart. An activity
diagram follows the flow of activities in the order they occur. Being
in an activity state means that an object is doing something. That
something could be an event, such as a button click or form load, or
the execution of a class method. Unlike a state chart diagram,
which concentrates on a single object and its processes, an activity
diagram focuses on the process and the flow of activities from
object to object. In brief, an activity diagram states the basic
sequencing convention the system should follow.

The activity diagram describes the sequence of activities
including any conditional or parallel behavior. A condition is
shown as a branching in the activity flow. A branch separates a
single transition into multiple outgoing transitions. So if bad data is
entered, the program flow will proceed down one branch. If the
data is good, the other branch will be followed. Either way, the
program activity flow merges again later on. Obviously, since only
one of the outgoing transitions can be taken, the conditions are
mutually exclusive, and a merge marks the end of conditional
behavior. See Figure 20.20.

Some activities can occur at the same time or in parallel.
Although not shown, parallel behaviors are drawn as forks and
joins. As with a branch, a fork has one incoming transition and
several outgoing transitions. In a fork, however, when the incoming
transition is encountered, all the outgoing streams are taken at the
same time. In the end a join occurs when all the incoming
transitions have completed their individual activities.

Activity diagrams are sometimes shown with object lanes,
often called swim lanes (see Figure 20.21). Lanes define which
object is responsible for which activity.

Now that we have completed all the diagrams for our value-
at-risk program, we are ready to code.

Step 1 Create a new VB.NET Windows application named
MonteCarlo.

Step 2 Create the GUI shown in Figure 20.22. Name the text
boxes txtIterations, txtLevel, txtDays, txtValue, and
txtVaR.

368 Object-Oriented Programming

Team-LRN

Before we can run a Monte Carlo simulation, we will need
some stocks and a portfolio.

Step 3 Add a class named Stock. We will try to keep the
classes simple to illustrate the overall design, so add
the following definition:

Public Class Stock

Private strTicker As String

Private dblBeta As Double

Private dblPrice As Double

Private dblShares As Double

F I G U R E 20.20

Unified Modeling Language 369

Team-LRN

Public Sub New(ByVal strTick As String, ByVal dblP As Double, _

ByVal dblB As Double, ByVal dblS As Double)

strTicker = strTick

dblPrice = dblP

dblBeta = dblB

dblShares = dblS

End Sub

Public ReadOnly Property Ticker()

Get

Return strTicker

End Get

End Property

Public ReadOnly Property Beta()

Get

Return dblBeta

End Get

End Property

Public ReadOnly Property Price()

Get

Return dblPrice

End Get

End Property

Public ReadOnly Property Shares()

F I G U R E 20.21

370 Object-Oriented Programming

Team-LRN

Get

Return dblShares

End Get

End Property

End Class

We could calculate a stock’s beta using the historical price
database, Finance.mdb, but for the sake of simplicity, we will leave
this step out.

Step 4 Add a Portfolio class. This class will inherit from the
Hashtable class and add a single Value property as
shown.

Public Class Portfolio

Inherits Hashtable

Public ReadOnly Property Value()

Get

Dim dblPortfolioValue As Double

Dim enumerator As IDictionaryEnumerator = GetEnumerator()

While enumerator.MoveNext()

F I G U R E 20.22

Unified Modeling Language 371

Team-LRN

dblPortfolioValue += enumerator.Value.Price * _

enumerator.Value.Shares

End While

Return dblPortfolioValue

End Get

End Property

End Class

Step 5 Now that we are ready to set up the portfolio, add the
following code to the Form1_Load event:

Dim myPortfolio As New Portfolio()

Private Sub Form1_Load(ByVal sender As ...) Handles MyBase.Load

Dim stock1 As New Stock("IBM", 80, 0.95, 2000)

Dim stock2 As New Stock("INTC", 20, 1.25, 3000)

Dim stock3 As New Stock("GE", 50, 0.5, 5000)

myPortfolio.Add(stock1.Ticker, stock1)

myPortfolio.Add(stock2.Ticker, stock2)

myPortfolio.Add(stock3.Ticker, stock3)

End Sub

At this point you may want to run your program to make sure
everything is in order so far. Now we are ready to add a Monte
Carlo simulation object according to our class diagram.

Step 6 Add a class called MonteCarlo.

Public Class MonteCarlo

Private myMarket As Market

Private CurrentPortfolio As Portfolio

Private dblIterations As Double

Private dblDaysAhead As Double

Public WriteOnly Property Market()

Set(ByVal Value)

myMarket = Value

End Set

End Property

Public WriteOnly Property Portfolio()

Set(ByVal Value)

CurrentPortfolio = Value

End Set

End Property

Public WriteOnly Property Iterations()

Set(ByVal Value)

dblIterations = Value

End Set

End Property

Public WriteOnly Property DaysAhead()

Set(ByVal Value)

dblDaysAhead = Value

End Set

End Property

Public Function Run(ByVal Level As Double) As Double

Randomize()

372 Object-Oriented Programming

Team-LRN

Dim x, y, z As Integer

Dim dblPortValue As Double = CurrentPortfolio.Value

Dim enumerator As IDictionaryEnumerator = CurrentPortfolio _

.GetEnumerator()

Dim randomprices As Double() = New Double(CurrentPortfolio.Count - 1) {}

Dim PortfolioValues As Double() = New Double(dblIterations - 1) {}

Dim PortfolioMoves As Double() = New Double(dblIterations - 1) {}

Dim dblNextMarketReturn As Double

Dim dblVol As Double = myMarket.GetVolatility()

For x = 0 To dblIterations - 1

dblNextMarketReturn = StdNormRnd() + dblVol * Math.Sqrt(dblDaysAhead _

/ 256)

z = 0

While enumerator.MoveNext()

randomprices(z) = enumerator.Value.Price * _

Math.Exp(dblNextMarketReturn * enumerator.Value.Beta)

PortfolioValues(x) += randomprices(z) * enumerator.Value.Shares

z += 1

End While

enumerator.Reset()

Next x

For x = 0 To dblIterations - 1

PortfolioMoves(x) = PortfolioValues(x) - dblPortValue

Next x

System.Array.Sort(portfoliomoves)

Return portfoliomoves(Level / 100 * dblIterations)

End Function

Private Function StdNormRnd() As Double

Return Rnd() + Rnd() + Rnd() + Rnd() + Rnd() + Rnd() + Rnd() + Rnd() + _

Rnd() + Rnd() + Rnd() + Rnd() - 6

End Function

End Class

Step 7 The market volatility is set by accessing the
Finance.mdb database and calculating the standard
deviation of log returns on the SPX over the entire
data set. Add a class for the market with the
following definition:

Public Class Market

Private myConnection As OleDb.OleDbConnection

Private myDataAdapter As OleDb.OleDbDataAdapter

Private myDataSet As DataSet

Public Function GetVolatility()

Dim dblVolatility, x As Double

myConnection = New OleDb.OleDbConnection("Provider=Microsoft.Jet. _

OLEDB.4.0;Data Source=C:\ModelingFM\Finance.mdb")

myDataAdapter = New OleDb.OleDbDataAdapter("Select ClosePrice _

from SPX", myConnection)

myDataSet = New DataSet()

myConnection.Open()

myDataAdapter.Fill(myDataSet, "SPXdata")

myConnection.Close()

Dim intLength As Integer = myDataSet.Tables("SPXdata").Rows.Count

Unified Modeling Language 373

Team-LRN

Dim dblSPYreturns As Double() = New Double(intLength - 2) {}

For x = 1 To intLength - 1

dblSPYreturns(x - 1) = Math.Log(myDataSet.Tables("SPXdata").Rows(x). _

Item(0) / myDataSet.Tables("SPXdata").Rows(x - 1).Item(0))

Next x

dblVolatility = StDevP(dblSPYreturns)

Return dblVolatility * Math.Sqrt(256)

End Function

End Class

As you can see, the class definition also requires that we
include the definition of the StDevP() function as a private method.
The StDevP() method necessitates also the VarP() and Average()
functions.

Step 8 To the class definition of Market, add as private
methods the functions StDevP(), VarP(), and
Average() from the CD.

F I G U R E 20.23

374 Object-Oriented Programming

Team-LRN

Step 9 To the Button1_Click event, add the following code to
set the simulation data and run the simulation:

Private Sub Button1_Click(ByVal sender As ...) Handles Button1.Click

Dim dblIters# = txtIterations.Text

Dim dblLevel# = txtLevel.Text

Dim dblDays# = txtDays.Text

Dim myMarket As New Market()

Dim myReturns As Double

Dim mySimulation As New MonteCarlo()

mySimulation.Market = myMarket

mySimulation.Iterations = dblIters

mySimulation.Portfolio = myPortfolio

mySimulation.DaysAhead = dblDays

myReturns = mySimulation.Run(dblLevel)

txtValue.Text = Format(myPortfolio.Value, "###,###,###.00")

txtVaR.Text = Format(myReturns, "###,###,###.00")

End Sub

Step 10 Run the program (see Figure 20.23).

SUMMARY

In this chapter we covered each of the 12 diagrams in UML, the
Unified Modeling Language, and applied them to a Monte Carlo
simulation for a portfolio of stocks. The chapter example program
was built from these diagrams. According to the Kumiega–Van
Vliet Trading System Development Methodology, we should
build an objects and program document before programming.
This document should lay out in UML all the classes, with
their attributes and functionalities as well as system design and
behavior.

Unified Modeling Language 375

Team-LRN

PROBLEMS

1. Describe each of the 12 UML diagrams in your own words.
2. Explain the three methods described for calculating value

at risk.
3. How would you create an objects and program document

using UML?
4. Describe each of the three categories of diagrams.
5. What is a package?

376 Object-Oriented Programming

Team-LRN

PROJECT 20.1

The beta of stock is the covariance of the stock with the market
divided by the standard deviation of the market according to the
following formula:

b ¼
ss;m

sm

Create a historical simulation program that uses data in the
Finance.mdb database to calculate the betas. The program should
select market returns at random from its distribution of historical
ones.

PROJECT 20.2

Add a connection to TraderAPI.dll and/or OptionsAPI.dll so that
the user can buy and sell assets and build a portfolio of stocks and
options and calculate value at risk using a Monte Carlo simulation.

Unified Modeling Language 377

Team-LRN

This page intentionally left blank.

Team-LRN

References

CHAPTER 1

Bernstein, Peter. 1992. Capital Ideas. The Free Press.
Norman, David. 2002. Professional Electronic Trading. John Wiley & Sons (Asia) Pte

Ltd.
Van Vliet, Benjamin, and Andrew Kumiega. 2000, Winter. “Obsolescence of the

Naked Trader.” Journal of Global Financial Markets, pp. 21–23.

CHAPTER 2

Boehm, Barry W. 1998, May. “A Spiral Model of Software Development and
Enhancement.” Computer, vol. 21, no. 5, pp. 61–72.

Kumiega, Andrew, and Benjamin Van Vliet. 2001, October 23. “A Software
Development Methodology for Financial Markets.” Paper presented at the
11th International Conference on Software Quality, Pittsburgh, PA.

Kumiega, Andrew, and Benjamin Van Vliet. 2003. “An Automated Trading System
Development Methodology.” A working paper.

Rawlings, Bruce. 2003. “In Sample versus Out of Sample Testing for Financial
Markets.” A working paper.

Royce, Winston W. 1970, August. “Managing the Development of Large Software
Systems.”

CHAPTER 4

Kolb, Robert W. 1997. Understanding Futures Markets, 5th ed. Blackwell Publishers.

CHAPTER 5

Alexander, Carol. 2001. Market Models. John Wiley & Sons Ltd.
Bollerslev, T. 1986. “Generalized Autoregressive Conditional Heteroscedasticity.”

Journal of Econometrics, vol. 31, pp. 307–327.

379

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

Engle, Robert F. 1982. “Autoregressive Conditional Heteroscedasticity with
Estimates of the Variance of UK Inflation.” Econometrica, vol. 50, pp. 987–
1007.

Garman, M. B., and M. J. Klass. 1980. “On the Estimation of Security Price
Volatilities from Historical Data.” Journal of Business, vol. 53, pp. 67–78.

Nelken, Israel. 1997. Volatility in the Capital Markets. Glenlake Publishing
Company.

Parkinson, M. 1980. “The Extreme Value Method for Estimating the Variance of the
Rate of Return.” Journal of Business, vol. 53, pp. 61–65.

CHAPTER 6

Black, F., and M. Scholes. 1973. “The Pricing of Options and Corporate Liabilities.”
Journal of Political Economy, vol. 81, pp. 637–654.

CHAPTER 7

Whaley, Robert E. 2000, Spring. “The Investor Fear Gauge.” The Journal of Portfolio

Management, pp. 12–17.

CHAPTER 8

Hull, John C. 2000. Options, Futures and Other Derivatives, 4th ed. Prentice-Hall.

CHAPTER 9

Engle, Robert F., and Joseph Mezrich. 1996, August. “GARCH for Groups.” Risk,
vol. 9, no. 8, pp. 36–40.

CHAPTER 10

Nelson, Charles R., and Andrew F. Siegel. 1987. “Parsimonious Modelling of Yield
Curves.” Journal of Business, vol. 60, no. 4, p. 89.

Wilmer, Ram. 1996, June. “A New Tool for Portfolio Managers: Level, Slop and
Curvature Durations.” Journal of Fixed Income.

CHAPTER 11

Hernandez, Michael J. 1997. Database Design for Mere Mortals. Addison-Wesley.

380 References

Team-LRN

CHAPTER 13

Bowman, J. S., S. L. Emerson, and M. Darnovsky. 2001. The Practical SQL

Handbook. Addison-Wesley.

CHAPTER 15

Deitel, H. M., P. J. Deitel, and T. R. Nieto. 2002. Visual Basic.NET: How to Program,
2d ed. Prentice-Hall.

CHAPTER 16

Melamed, Leo. 2002. “Derivatives Exchanges in a Changed World Order.”
Handbook ofWorld Stock, Derivative and Commodity Exchanges. Mondo Visione
Ltd.

CHAPTER 17

Black, Keith. 2003. “Applications of Optimization in Financial Markets.” A
working paper.

Cernauskas, Debra. 2003. “Maximum Likelihood Parameter Estimation for
Financial Model Building in Excel.” A working paper.

CHAPTERS 18 AND 19

Bradley, Ronan. 2002, October 21. “XML and the Financial Services Industry.”
expoQ Daily, www.ebizq.net.

FIX Protocol, Ltd. 2003. www.fixprotocol.org.
International Swaps and Derivatives Association. 2003. www.FpML.org.
Pierce, Ryan. 2001, February 26. Townsend Analytics, Ltd. “Transitioning to

Advanced Versions of Messaging Standards.” Presented at FIXML
Professional Training Course, New York.

CHAPTER 20

Alhir, Sinan Si. 1998. UML in a Nutshell. O’Reilly.
Jorion, Philippe. 2001. Value at Risk, 2d ed. McGraw-Hill.
Roff, Jason T. 2003. UML: A Beginner’s Guide. McGraw-Hill/Osborne.

References 381

Team-LRN

This page intentionally left blank.

Team-LRN

Acronyms

ADO ActiveX Data Objects

API Application programming interface

ATM At the money

BOX Boston Options Exchange

CBOE Chicago Board Options Exchange

CLR Common language run time

CME Chicago Mercantile Exchange

COM Component object model

COTS Commercial off the shelf (software)

DOM Document object model

DTD Document type definition

DTMS Data transformation management system

ECN Electronic communications network

FCM Futures commission merchant

FIX Financial Information Exchange (protocol)

GARCH Generalized Autoregressive Conditional Hetero-
scedasticity

GUI Graphical user interface

HTML Hypertext Markup Language

IDE Integrated Development Environment

ISE International Securities Exchange

ISO International Organization for Standardization

383

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

MSIL Microsoft Intermediate Language

NQLX Nasdaq Liffe Markets

NYSE New York Stock Exchange

OOP Object-Oriented Programming

RCW Run-time callable wrapper

RDBMS Relational database management system

RDM Relational database model

SQL Structured Query Language

STP Straight-through processing

TT Trading Technologies, Inc.

UML Unified Modeling Language

VBA Visual Basic for Applications

VIX S&P 100 volatility index

XML Extensible Markup Language

384 Acronyms

Team-LRN

Abbreviations, financial, 329
Abs() function, 91
Absolute value, 91
Abstraction, 111
AcceptChanges method, 206, 209
Access databases (see MS Access databases)
Access modifiers, 49–50, 119
Accessibility, 49–50, 273
Activation bars, 364
ActiveX controls, 277
ActiveX Data Objects (see MS ActiveX Data

Objects)
Activity diagrams, 368–375
Add method, 206–208, 244, 246, 247, 259
ADO (see MS ActiveX Data Objects)
Aggregate functions (SQL), 226–236
Aggregation relationships, 356–358
Aliasing, 231
AllowDbNull property, 207
ALTER TABLE statement (SQL), 238
American call options, 145–147
American National Standards Institute (ANSI),

219
AMEX, 289
& (entity reference), 308
Analytical databases, 188
AND operator, 53, 224
AndAlso operator, 53
Annualized volatility number, 77
ANSI (American National Standards Institute),

219
APIs (see Application programming interfaces)
' (entity reference), 308
Application programming interfaces (APIs), 7,

272–275, 281, 289
Arbitrage, 58–60
Arguments, 82–86
Arithmetic operators, 52
Array index out-of-range exceptions,

153
ArrayList class, 257
Arrays, 68–69, 133–148
AS modifier (SQL), 227
Assemblies, 173
Assembly manifests, 276
Assignment operators, 52
Association relationships, 355, 356
Asterisk, 212, 222, 356–358
At-the-money (ATM), 120–129
ATM volatility, 120–129
Attributes, 308, 311, 312
AutoIncrement property, 207
Automated order entry, 4, 289
Automated trade execution, 4, 271
“An Automated Trading System Development

Methodology” (Andrew Kumiega and Ben Van
Vliet), 11

Average function, 227, 228
Average() function, 140
Average return, 142

AVG function (SQL), 227, 228

Back-end data sources, 219
Back-end trading system, 8
Back testing, 18–19
Base class, 116, 117
BEGIN keyword (SQL), 236
BeginEdit method, 209
Behavior diagrams, 345, 361–367
Beta of stock, 377
BETWEEN operator (SQL), 223
Binomial trees, 135–137, 145–147
BitArray class, 257
Black-Scholes option pricing formula, 3,

86–90, 121
Boolean value type, 48, 95
Boston Options Exchange (BOX), 4
Bounds, 133, 134, 137, 139
BOX (Boston Options Exchange), 4
Braces ({ }), 355
Bracket ([]) wildcard, 226
Breakpoints, 158–160
Button class, 109
Button Click event, 119
ByRef keyword, 84–85
ByVal keyword, 84–85

Calendar-day volatilities, 121–124
CancelEdit method, 209
Carrying charge, 59
Case-sensitivity, 221
CaseInsensitiveComparer class, 257
CaseInsensitiveHashCodeProvider class, 257
Cash-and-carry arbitrage, 59
Catch blocks (see Try...Catch...Finally...End Try

blocks)
CBOE (see Chicago Board Options Exchange)
CBool() function, 95
CChar() function, 95
CDATA, 309, 312
CDate() function, 95
CDbl() function, 95
CDec() function, 95
Ceiling() function, 91
Char value type, 48, 92, 95
CHAR() value type (SQL), 238
Character code, 91
Character data, 308, 309
Chicago Board of Trade, 8, 63
Chicago Board Options Exchange (CBOE), 3, 8, 9,

54, 121, 274, 290
Chicago Mercantile Exchange (CME), 8, 9, 54, 274
Child class, 116
Chr() function, 91
CInt() function, 95
Class diagrams, 353–359
Class relationships, 354
Classes, 109, 173
Clean data, 19

I N D E X

385

Copyright © 2004 by The McGraw-Hill Companies, Inc. C lick here for terms of use.

Team-LRN

Cleaning data, 248–250
Clear method, 138, 204, 206, 259, 264
CLng() function, 95
Clone method, 204, 206
CLR (see Common language run–time)
CME (see Chicago Mercantile Exchange)
Collaboration diagrams, 365, 366
Collection class, 243–248
CollectionBase class, 246, 247, 257
Column aliasing, 231
ColumnChanged event, 206
ColumnName method, 208
Columns, 206–208
Columns collection, 205
Columns.Add method, 207
COM (see Component Object Model

objects)
COM class templates, 277
Comm (commission), 329
Comma, 221
Comma delimiter, 225
Commercial off–the–shelf (COTS) software,

273–275
Commission (comm), 329
COMMIT keyword (SQL), 236
Common language run–time (CLR), 161, 162, 164,

276, 277
Company (comp), 329
Comparer class, 257
Comparison operators, 52, 223–224
Compiling, 38–39, 152
The Complete Guide to Option Pricing Formulas

(Espen Gaarder Haug), 88
Component diagrams, 359–361
Component Object Model (COM) objects, 272,

275–277
Composition relationships, 355, 356
Concatenation, 92
Concatenation operators, 53
Conditionally required content, 329
Connecting (to a database), 210–215
Connections, 202
Connectivity, 281–297, 302, 324, 328
Constants, 49, 96
Constraints, 355
Constraints property, 206
Constructor (Hashtable), 258
Constructor methods, 113, 117
Content, conditionally required, 329
Continue button, 160
Continuous–improvement strategy, 27
Continuous rates of return, 141–142
Control structures, 65–77
Controls, 35–36
Conversion functions, 94–96
Cost-of-carry model, 56–57
COTS software (see Commercial off-the-shelf

software)
COUNT function (SQL), 227, 228
Covariance forecasting, 153–158
Covariance matrix, 144
CREATE TABLE statement (SQL), 237–238
CREATE VIEW statement (SQL), 236–237
CShort() function, 95
CSng() function, 95

CStr() function, 95
CType() function, 95
Currency (curr), 329
Currency format, 94

Data, 5, 18, 19, 141–143, 248–250, 272,
317–320 (See also Value types)

Data-aware components, 201–202
Data definition language (DDL), 220,

236–238
Data integrity, 189
Data manipulation language (DML),

220–226
Data structures, 243–253, 257–268
Data transformation management system (DTMS),

251–252
DataAdapter objects, 203, 207
Database Design for Mere Mortals (Michael

Hernandez), 192
Database programming, 187–197, 201–215,

219–239, 243–253, 257–268
Databases, 187
DataColumnCollection, 207–208
DataColumns, 207–208
DataGrids, 201–202
DataRowCollections, 208–209, 212–213, 251–252
DataRows, 208–209
DataSet model, 202
DataSets, 203–205, 212
DataTables, 205–207
DATE value type (SQL), 238
DateAdd() function, 97
DateDiff() function, 97, 98
Dates, 50, 95–98, 224, 234
DateSerial() function, 97
DateValue() function, 97
Day() function, 97
DDL (see Data definition language)
Deallocation code, 162
Debugging, 151, 160
Decimal (@) value type, 48, 95
Declaration, 47–49, 133
Default values, 49, 312
Definitions, 82, 83
DELETE statement (SQL), 235–236
Delimited strings, 92
Delta normal approach, 350–351
Dependency relationships, 354–355,

359–360
Deployment diagrams, 360–362
Derivatives markets, 8, 271
Derived class, 116–117, 118
Description of trading idea, 16–17
Description property, 166
Design, database, 192–193
Determinant, matrix, 177
Development methodology (see Kumiega–Van

Vliet trading system development
methodology)

Diamond, 357, 358
DictionaryBase class, 257
DictionaryEntry object, 258, 259
DictionaryEntry structure, 257
Dim keyword, 133–134
Dim statement, 47–49, 139

386 Index

Team-LRN

Direct database interaction, 202
DirtyFinance.mdb database, 194–195
DISTINCT function (SQL), 228–229
Division by zero, 153, 164
DK (don’t know), 329
.dll files, 273, 281
DLLs (see Dynamic link library files)
DML (see Data manipulation language)
Document object model (DOM), 309
Document type definitions (DTDs),

306–313, 329
Documentation, 25, 26
Do...Loop Until loop, 70
Do...Loop While loop, 70
DOM (document object model), 309
Don’t know (DK), 329
Double (#) value type, 48, 95
Do...Until loop, 69–70
Dow futures, 8
Dow Jones Industrial Average, 54, 63
Do...While loop, 69
DTDs (see Document type definitions)
DTMS (see Data transformation management

system)
Duplicates filter, 228–229
Dynamic link library files (DLLs), 173

E (base of natural logarithms), 91
E-Mini contracts, 54
E-Mini S&P, 9
ECNs, 289
Electronic Trading System (CBOE), 274
Electronic trading systems, 323
Elements (DTD), 307
Encapsulation, 112–115
EndEdit method, 209
ENTITIES attribute, 312
ENTITY attribute, 312
Entity references, 308
Enum statement, 52
Enumerations, 51–52
Equal operator, 53
Erase statement, 141
Err object, 166
Errors, 152, 153, 161
Events, 37–38, 42, 118–119
Excel (see Microsoft Excel)
Exception handlers, 153, 160–167
Exceptions, errors vs., 161
Exchange "back end," 8
Exchange (exch), 274–275, 329
Exclamation point (!) value type, 48, 95
Executable files (EXEs), 173
Executable programs, 38–42
Exit command, 71
Exit Do command, 71
Exit For command, 71
Exp() function, 91
Exponentiation, 52
Extend relationships, 364
Extensible Business Reporting Language, 324
Extensible Financial Research Markup Language

(XFRML), 324
Extensible Markup Language (XML), 272, 301–320
Extreme value estimators, 72–73

Fair value, 58–59
False condition, 96
“Fat tails”, 6
Fidelity, 327
Fields, 188–190
FillObj class, 283, 285
Finally block, 162
Finance.mdb database, 193–194
Financial abbreviations, 329
Financial engineering, 3–7
Financial engineers, 4–5
Financial functions, 98–99
Financial Information Exchange (FIX), 324, 325
Financial markets, evolution of, 3
Financial Markets Exchange (FMEX),

315–316
Financial Markets Markup Language (FMML),

303–320
Financial Products Markup Language (FpML),

324, 325–327
FinXML, 324
FIX (see Financial Information Exchange)
FIX interface, 274
FIX Protocol, Ltd. (FPL), 325, 327–337
Fixed format, 94
Fixed-length character fields, 238
#FIXED value, 312
FIXML, 324, 325, 328–337
Flat-file structures, 187
Floor() function, 91
FMEX (see Financial Markets Exchange)
FMML (see Financial Markets Markup Lanugage)
For Each...Next loop, 68–69
Forecasting, 73–77, 153–158
Foreign (forex), 329
Foreign keys, 191
Forex (foreign), 329
Format() function, 93–94
For...Next loop, 68, 71–72, 135
FPL (see FIX Protocol, Ltd.)
FpML (see Financial Products Markup Language)
Friend keyword, 119
Front-end trading systems, 7–8, 219
“Fully qualified” object names, 173
Functions, 82–105, 138–141
Fut (see Futures)
Future value of annuity function, 98, 99
Futures contracts, 54, 63
Futures (fut), 54–60, 329
Futures market connectivity, 282–288
FV() function, 98, 99

GARCH (see Generalized autoregressive
conditional heterscedasticity models)

GARCH(1,1) model, 74, 76, 249
Garman, M. B., 73
Garman-Klass estimator, 73
General number format, 94
Generalization relationships, 356, 357
Generalized autoregressive conditional

heterscedasticity (GARCH) models,
73–74

Global variables, 50
Globex system, 274
Graphical user interface (GUI), 35

Index 387

Team-LRN

Greater than operator, 53
Greater than or equal operator, 53
GROUP BY clause (SQL), 229–230
> (entity reference), 308
GUI (see Graphical user interface)

Hardware, 360–361
Hash tables, 258–265
Hashing, 258
Hashtable class, 257
Haug, Espen Gaarder, 88
HAVING clause (SQL), 230–231
Help, 38
Hernandez, Michael, 192–193
Historical market data, 5, 18, 19
Historical simulation, 351–352
Hoffer, Eric, 185
Hour() function, 97
HTML (Hypertext Markup Language), 301
Hull, Blair, 1
Hypertext Markup Language (HTML), 301

IBM, 8–9
ID attribute, 312
ID (identifier), 329
IDE (see Integrated development environment)
Identifier (ID), 329
IDictionaryEnumerator, 259–260, 264
IDREF attribute, 312
IDREFS attribute, 312
If...Then...Else statement, 65–66
IFX (Interactive Financial Exchange), 324
Implementation (of trading system), 19–25
#IMPLIED value, 312
Implied volatility, 100–105
ImportRow method, 206
Imports statement, 173–175
IN operator (SQL), 223
Index, 134, 225, 243
IndexOp class, 290
IndexOutOfRangeException, 164
Indication of interest (IOI), 329
Infinite loops, 71
Inheritance, 116–118
Initializer list, 133–134
Input arguments, 83–86
Insert method, 246
INSERT statement (SQL), 233–235
InStr() function, 92
InstrNotify class, 283–284
InstrObj class, 283
Instrument property, 284
Integer (%) value type, 48, 95
Integer division, 52
Integer greater than or equal to input argument, 91
Integer less than or equal to input argument, 91
Integrated development environment (IDE), 33–

38
Integrity, data, 189
Interactive Financial Exchange (IFX), 324
Interest payment function, 98
Interest rate function, 99
Interfaces, 172–173
Internal rate of return function, 98
International Securities Exchange (ISE), 274

International Standards Organization (ISO), 325
Interop marshaling, 277
Interoperability, 271–278, 324, 328
Interoperability assembly, 276–277
InvalidCastException, 164
Inversion, 141, 177
Investment Research Markup Language (IRML),

324
“The Investor Fear Gauge” (Robert Whaley), 121
IOI (indication of interest), 329
Ipmt() function, 98
IRML (Investment Research Markup Language),

324
IRR() function, 98
IsArray() function, 96
IsConstant() function, 96
IsDate() function, 96
IsDBNull() function, 255
ISE (International Securities Exchange), 274
IsNull method, 209
IsNumeric() function, 96
ISO 15022, 325
ISO (International Standards Organization), 325
IsReference() function, 96
Item property, 208, 244, 258
ItemArray property, 208

Jagged arrays, 135–137, 145–147
Join() function, 92
Joining tables, 192, 231–232

Kettering, Charles, 269
Key-and-value pairs, 258
Klass, M. J., 73
Kumiega, Andrew, 11, 12, 14
Kumiega–Van Vliet trading system development

methodology, 12–28
Kurtosis, 142

Language independence, 39
Leading characters, 226
Left() function, 92, 93
Len() function, 92
Length property, 138
Less than operator, 53
Less than or equal operator, 53
Libraries, 281
Library of quantitative methods, 17–18
Life cycles, 365
Lifelines, 364
LIKE operator (SQL), 223, 225–226
Linear regression, 177
Live market feeds, 272
Log() function, 91
Log returns, 214
Logic errors, 152
Logical operators, 52
Lognormal distribution, 108
LognormalRnd() function, 100
Long (&) value type, 48, 95
Long Term Capital Management, 6
Lowenstein, Roger, 6
Lower bounds, 133
LSC model, 178–179

388 Index

Team-LRN

< (entity reference), 308

Machine language, 38, 39
Managed memory, 276
Managing portfolio and risk, 26–27
Many-to-many relationships, 191, 195
Market connectivity, 281
Market data, 274
Market Data Definition Language (MDDL), 324
Market Data Markup Language (MDML), 324
Market-value-weighted index, 54–55
Mathematical functions, 90–91
Matrix algebra, 144–145
Matrix determinant, 177
Matrix inversion, 177
Matrix multiplication, 177
Matrix transposition, 177
MatrixMath.dll, 177
Max() function, 91
MAX function (SQL), 227, 228
.mdb extension, 193
MDDL (Market Data Definition Language), 324
MDeterm() function, 177
MDML (Market Data Markup Language), 324
Mean deviation, 62, 100
Member functions, 109
Memory, 275–276
Menu bar, 35
Message box function, 99
Message calls, 364
Messages, 329, 365
Metalanguages, 301, 302
Methodology, 6
Methodology, development (see Kumiega–Van

Vliet trading system development
methodology)

Methods (Visual Basic.NET), 38, 109
MH (see MicroHedge, Inc.)
MHposition class, 290
MHSBT class, 290
MicroHedge, Inc. (MH), 9, 289–291
MicroHedge class, 290
Microsoft, 189, 201, 272, 275, 276
Microsoft Excel, 5, 18, 145, 152, 156, 178, 187
Microsoft Intermediate Language (MSIL), 38–39
Mid() function, 92, 93
Middleware, 272, 273
Min() function, 91
MIN function (SQL), 227, 228
Minute() function, 97
MInverse() function, 177
MIRR() function, 98
MMult() function, 145, 177
MMult2by1() function, 177
Mod operator, 52
Model diagrams, 346, 347
Model management diagrams, 345–349
Modified internal rate of return function, 98
Modulos, 52
Monitoring portfolios, 26
Monte Carlo simulation, 79–80, 352–375
Month() function, 97
Moore’s law, 4
MS Access databases, 193–196

MS ActiveX Data Objects (ADO), 189,
201–215

MS SQL Server, 5, 201
MsgBox function, 99
MSIL (see Microsoft Intermediate Language)
MTranspose() function, 177
Multiple linear regression, 177
Multiplication, 52, 177
Multiplicities, 356–358
MultRegression() function, 177
MustInherit CollectionBase class, 246
MustInherit keyword, 116
MustOverride keyword, 116
MyBase keyword, 117

Name (of function), 82
Namespaces, 173
“NaN” (not a number) value, 164
Natural log, 62, 66, 91
Negation, 52
Nelson, Charles R., 178
Nested loops, 71–72, 135
.NET Framework, 171, 276–277
.NET IDE toolbox, 277
.NET objects, COM objects vs., 275–277
Net present value function, 98
.NET type system, 171–182
New keyword, 113–115, 133
New method, 203, 204, 206, 207
NMTOKEN attribute, 312
NMTOKENS attribute, 312
Nonprocedural programming languages, 220
Normal distribution, 100
Normal form, 192
Normalization, 192
Norman, David, 5
“Not a number” (NaN) value, 164
Not equal operator, 53
NOT NULL keyword, 238
Not operator, 53
NOTATION attribute, 312
Nothing keyword, 120, 245
NotOverridable keyword, 116
Now function, 97
NPer() function, 98
NPV() function, 98
NQLX, 9
NULL keyword, 234, 238
Number of periods function, 98
Number property, 166
Numbers, 94–96
NUMERIC() value type (SQL), 238
NYSE, 8, 289

Object diagrams, 358–360
Object Linking and Embedding Databases

(OleDb), 201–203
Object-oriented programming (OOP), 25, 109, 116

(See also Unified Modeling Language)
Objects, 109–131
OEX index (see S&P 100 index)
OFX (see Open Financial Exchange.XBRL)
OleDb (see Object Linking and Embedding

Databases)
OleDbCommand, 202

Index 389

Team-LRN

OleDbCommand object, 234
OleDbConnection class, 202, 210, 211
OleDbDataAdapter class, 203, 210–212
On Error GoTo statement, 164–166
On Error Resume Next statement, 166
One Chicago, 9
One-dimensional arrays, 133–134
One-period volatility, 72–73
One-to-many relationships, 191, 195
One-to-one relationships, 191
OOP (see Object–oriented programming)
Open Financial Exchange.XBRL (OFX), 324, 329
Open() method, 283, 284
Open source code, 273
Operational databases, 188
Operators, 52–54
Option (opt), 329
Option Strict Off statement, 51
Option Strict On statement, 50–51
Option symbols, 67
Optional keyword, 83–84
Options exchanges, 4
Options library, 174–175
Options markets, 9, 289–296
OptionsAPI.dll, 281, 289–291
Options.mdb database, 195–196
OR operator, 53, 224
Oracle, 5, 189, 219, 236
ORDER BY clause (SQL), 224–225
Order (ord), 329
Order routing, 274
Ordered messages, 329
OrderProfile class, 283, 284
OrderSet class, 283, 284
OrElse operator, 53
Out-of-sample testing, 19
Overloading, 120
Overloads keyword, 120
Overridable keyword, 116
Overrides keyword, 116
Overriding definitions, 115–117, 116

Package diagrams, 347–349
Paper trading, 25
ParamArray keyword, 85–86
Parameter array, 85–86
Parameterless Catch, 162
Parameters, optional, 83–84
Parent class, 116
Parkinson, M., 73
Parsed character data (PCDATA), 308
Parsers, 305, 309–313
Parsing strings, 92
Payment funciton, 98
PCDATA (parsed character data), 308
Percent format, 94
Percent wildcard, 225
Persistent connections, 202
Pipe character (|), 311
PL/SQL, 219
Plain markup language, 306
Pmt() function, 98
Polymorphism, 118
Polynomial model, 179–181
Portfolio delta calculation, 265

Portfolio management, 26–27
Portfolio matrix, 144
Pound sign (#), 48, 95, 224, 234
PPmt() function, 99
Predefined format functions, 94
Present value function, 99
Preserve keyword, 139–140
Price property, 284
Price (px), 329
Price-weighted index, 54
Primary keys, 190
PrimaryKey property, 206
Principal payment function, 99
Private keyword, 119
Problem solving, 151–167
Procedural programs, 55
Procedures, 81–82, 81–106 (See also Functions;

Subroutines)
Professional Electronic Trading (David Norman), 5
Profitability, 26
Profitability testing, 18, 19, 25
Program flow statements, 65–72
Program trading, 58
Properties window, 37
Protected keyword, 119
Public interface, 109, 112
Public keyword, 119
PV() function, 99
Px (price), 329

Qty (quantity), 329
Quantitative methods, 17–18
Quantitative trading systems, 6, 11
Quantity property, 284
Quantity (qty), 329
Queries, 192
Queue class, 257
" (entity reference), 308

Random number functions, 99–100
Random number generator, 79–80, 100
Randomize() function, 100
Ranges of characters, 226
Rank property, 138
Rate() function, 99
Rational Rose, 345
RCW (run-time callable wrapper), 276
RDBMSs (see Relational database management

systems)
RDM (see Relational database model)
ReadOnly keyword, 113
ReadOnlyCollectionBase class, 257
Records, 188–190
ReDim() procedure, 139–140
References, validation function for, 96
Registration, COM object, 277
Regsvr32 utility, 277
Relational database management systems

(RDBMSs), 189
Relational database model (RDM), 188–189
Relational databases, 187–197
Relationships, 189, 191
Remove method, 244, 246, 259
RemoveAt, 246, 247
Repetition structures, 67–72

390 Index

Team-LRN

#REQUIRED value, 312
Research Information Exchange Markup

Language (RIXML), 324
Research quantitative methods, 17–18
Resume statement, 165
Return argument, 81
Return keyword, 86
Return value, 81, 82
Return values, 86
Reverse cash-and-carry arbitrage, 59–60
Right() function, 92, 93
Risk management, 26–27
RIXML (Research Information Exchange Markup

Language), 324
Rnd() function, 79–80, 99–100
ROLLBACK keyword (SQL), 236
Rows, 208–209
Rows collection, 205
Rows.Add method, 208
Run-time callable wrapper (RCW), 276
Run-time errors, 153

Salomon Brothers, 327
SAX (simple API for XML) model, 309
SBT (see Screen Based Trading)
Scientific format, 94
Scope creep, 14
Scope documents, 20, 23–24
Scope (of variables), 49–50
Screen Based Trading (SBT), 289, 290
SDK (software developer’s kit), 289
Second() function, 97
Securities Financing Extensible Markup Language

(SFXL), 324
Securities trading, 271
Select Case statement, 66–67
Select statement (SQL), 221–223
Selection structures, 65–67
SendOrder() method, 284
Senge, Peter, 31
Sequence diagrams, 364–365
SetLimits() method, 284
SetTradeParams() method, 284
SetTradeType() method, 284
SFXL (Securities Financing Extensible Markup

Language), 324
Shadows keyword, 116
Shared fields, 189
Shared keyword, 119
Short value type, 48, 95
Siegel, Andrew F., 178
Sign() function, 91
Simple API for XML (SAX) model, 309
Single (!) value type, 48, 95
Skew, 142, 177
Smiles, volatility, 176–181
Snepscheut, Jan van de, 341
Society for Worldwide Interbank Financial

Telecommunications (SWIFT), 324, 325
Software, 9, 271–278, 359–360
Software developer’s kit (SDK), 289
Solution Explorer window, 36–37
Sort() function, 138–139
SortedList class, 257
S&P 500 cash options, 8, 9

S&P 500 eMini futures, 282
S&P 500 futures, 8
S&P 500 index, 54
S&P 100 (OEX) index, 121–123
S&P 500 options contracts, 290
Special-character entities, 308
Spiral methodology, 13–15
Split() function, 92–93
SQL (see Structured Query Language)
SqlClient objects, 201
Sqrt() function, 91
Square brackets ([]) wildcard, 226
Square root, 62, 91
Standard deviation, 62, 100
Standard format, 94
Starting position of string, 92
State chart diagrams, 365–367
States, 365–367
StdNormRand() function, 100
Step Into button, 160
Step Out button, 160
Step Over button, 160
Stock index futures, 54–60
Stop Debugging button, 160
STP (see Straight-through processing)
STPML (Straight-through Processing Markup

Language), 324
Str() function, 95
Straight-through Processing Markup Language

(STPML), 324
Straight-through processing (STP), 272, 323
StrComp() function, 92
String ($) value type, 48, 95, 234
String comparison, 92, 224–226
String functions, 91–93, 95
Structural diagrams, 345, 353–361, 353–362
Structure statement, 51
Structured exception handlers, 161–164
Structured Query Language (SQL), 189, 192, 219–

239
Structures, 51
Subroutines, 81, 83–90
Subsystem diagrams, 346, 347
Subtraction, 52
SUM function (SQL), 227–228
SWIFT (see Society for Worldwide Interbank

Financial Telecommunications)
SwiftML, 324, 325, 329
Sybase, 189
Syntax errors, 152
System.Array namespace, 138
System.Collections classes, 263
System.Collections.namespace, 246, 257
System.Data.OleDb namespace, 210
System.DBNull object, 255
System.Exception class, 162
System.XML namespace, 309

Table property, 208
TableName property (DataTable), 206
Tables, 188–190, 237–238
Tables property, 204
Tables.Add method, 206
Tags, 302–308
Technology, 271–272, 323

Index 391

Team-LRN

10-day volatility forecast, 77
Termination, condition for, 14
Testing, 18–19, 353
Third–party trading software, 7, 281
Throw points, 161
Throw statement, 166–167
Time, 238
Time interval, data, 249
Timely data, 19
TimeOfDay function, 97
Timing (of external events), 365
Today function, 97
Toolbox, 35–36
ToString() method, 131, 264
TraderAPI, 360–362
TraderAPI.dll, 281–283, 285, 288
Trading-day volatilities, 121–124
Trading Technologies, Inc. (TT), 9, 282
Trailing characters, 226
Transact-SQL, 219
Transitions, 366–367
Transposition, 141, 177
Trees, binomial, 135–137, 145–147
True condition, 96
Try...Catch...Finally...End Try blocks,

161–164
TT (see Trading Technologies, Inc.)
Two-dimensional arrays, 134–135
Type systems, 171–173
Type (term), 171

Ubound() function, 141
UML (see Unified Modeling Language)
Underscore (_) wildcard, 226
Unified Modeling Language (UML), 25, 344–349,

353–375
Uniform resource locator (URL), 312
UNION keyword (SQL), 233
Unique method, 208
Unmanaged memory, 276
Unstructured exception handlers, 164–166
Update method, 203
UPDATE statement (SQL), 235
Upper bounds, 133, 134, 137, 139, 141
URI (URL object representation), 316
URL (uniform resource locator), 312
U.S. Treasury bills (T–bills), 122
Use case diagrams, 361–364
User-defined data types, 51
User-defined format functions, 94
User-defined interfaces, 172
Uses relationships, 362–363

Val() function, 95
Valid XML documents, 305–307

Validation functions, 96
Value at risk (VaR), 26, 349–375, 350–352
Value types, 47–52, 234, 238
Values, attribute, 312
Van Vliet, Ben, 11, 12, 14
VaR (see Value at risk)
VARCHAR2() value type (SQL), 238
Variable-length character fields, 238
Variables, 47–50
Variance of returns, 142
VBA (see Visual Basic for Applications)
VB.NET (see Visual Basic.NET)
Views, creating, 236–237
Visibility, 50
Vision documents, 20–22
Visual Basic, versions of, 33
Visual Basic for Applications (VBA), 5, 33
Visual Basic.NET (VB.NET), 7, 33–43,

47–54, 65–72, 81–106, 109–129, 133–148, 151–
167, 171–182, 188, 271–278, 281–297

Visual Studio.Net, 33–38
Visualization, 345
VIX (volatility index) methodology, 121
Volatility, 72–77, 100–105, 108, 120–129
Volatility index (VIX) methodology, 121
Volatility smiles, 176–181

Watch window, 160
Waterfall model, 12–13
Weather Markup Language (WeatherML), 324
WeatherML (Weather Markup Language), 324
Weekday() function, 97
Well-formed XML documents, 305
Whaley, Robert, 121
When Genius Failed (Roger Lowenstein), 6
Where clause (SQL), 223–224
While...End While loop, 71
Wildcards, 212, 222, 225, 226
Wilmer, Ram, 178
www.FIXprotocol.org, 329
www.FpML.org, 326

XFRML (Extensible Financial Research Markup
Language), 324

XML (see Extensible Markup Language)
XML messages, 309, 315–317
XML protocols, 323–337, 325–337
XML schema, 306
Xml: attribute, 312
Xor operator, 53
X_Trader, 9, 282

Year() function, 97
Yield curve models, 178

392 Index

Team-LRN

	Binder1.pdf
	Binder4.pdf
	Binder3.pdf
	Cover.pdf
	D.pdf
	i.pdf
	ii.pdf
	iii.pdf
	iv.pdf
	v.pdf
	vi.pdf

	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf
	19.pdf
	20.pdf
	21.pdf
	22.pdf
	23.pdf
	24.pdf
	25.pdf
	26.pdf
	27.pdf
	28.pdf
	29.pdf
	30.pdf
	31.pdf
	32.pdf
	33.pdf
	34.pdf
	35.pdf
	36.pdf
	37.pdf
	38.pdf
	39.pdf
	40.pdf
	41.pdf
	42.pdf
	43.pdf
	44.pdf
	45.pdf
	46.pdf
	47.pdf
	48.pdf
	49.pdf
	50.pdf
	51.pdf
	52.pdf
	53.pdf
	54.pdf
	55.pdf
	56.pdf
	57.pdf
	58.pdf
	59.pdf
	60.pdf
	61.pdf
	62.pdf
	63.pdf
	64.pdf
	65.pdf
	66.pdf
	67.pdf
	68.pdf
	69.pdf
	70.pdf
	71.pdf
	72.pdf
	73.pdf
	74.pdf
	75.pdf
	76.pdf
	77.pdf
	78.pdf
	79.pdf
	80.pdf
	81.pdf
	82.pdf
	83.pdf
	84.pdf
	85.pdf
	86.pdf
	87.pdf
	88.pdf
	89.pdf
	90.pdf
	91.pdf
	92.pdf
	93.pdf
	94.pdf
	95.pdf
	96.pdf
	97.pdf
	98.pdf
	99.pdf

	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf
	241.pdf
	242.pdf
	243.pdf
	244.pdf
	245.pdf
	246.pdf
	247.pdf
	248.pdf
	249.pdf
	250.pdf

	251.pdf
	252.pdf
	253.pdf
	254.pdf
	255.pdf
	256.pdf
	257.pdf
	258.pdf
	259.pdf
	260.pdf
	261.pdf
	262.pdf
	263.pdf
	264.pdf
	265.pdf
	266.pdf
	267.pdf
	268.pdf
	269.pdf
	270.pdf
	271.pdf
	272.pdf
	273.pdf
	274.pdf
	275.pdf
	276.pdf
	277.pdf
	278.pdf
	279.pdf
	280.pdf
	281.pdf
	282.pdf
	283.pdf
	284.pdf
	285.pdf
	286.pdf
	287.pdf
	288.pdf
	289.pdf
	290.pdf
	291.pdf
	292.pdf
	293.pdf
	294.pdf
	295.pdf
	296.pdf
	297.pdf
	298.pdf
	299.pdf
	300.pdf
	301.pdf
	302.pdf
	303.pdf
	304.pdf
	305.pdf
	306.pdf
	307.pdf
	308.pdf
	309.pdf
	310.pdf
	311.pdf
	312.pdf
	313.pdf
	314.pdf
	315.pdf
	316.pdf
	317.pdf
	318.pdf
	319.pdf
	320.pdf
	321.pdf
	322.pdf
	323.pdf
	324.pdf
	325.pdf
	326.pdf
	327.pdf
	328.pdf
	329.pdf
	330.pdf
	331.pdf
	332.pdf
	333.pdf
	334.pdf
	335.pdf
	336.pdf
	337.pdf
	338.pdf
	339.pdf
	340.pdf
	341.pdf
	342.pdf
	343.pdf
	344.pdf
	345.pdf
	346.pdf
	347.pdf
	348.pdf
	349.pdf
	350.pdf
	351.pdf
	352.pdf
	353.pdf
	354.pdf
	355.pdf
	356.pdf
	357.pdf
	358.pdf
	359.pdf
	360.pdf
	361.pdf
	362.pdf
	363.pdf
	364.pdf
	365.pdf
	366.pdf
	367.pdf
	368.pdf
	369.pdf
	370.pdf
	371.pdf
	372.pdf
	373.pdf
	374.pdf
	375.pdf
	376.pdf
	377.pdf
	378.pdf
	379.pdf
	380.pdf
	381.pdf
	382.pdf
	383.pdf
	384.pdf
	385.pdf
	386.pdf
	387.pdf
	388.pdf
	389.pdf
	390.pdf
	391.pdf
	392.pdf

	Acknowledgments:
	Section One Trading System Development:
	Introduction:
	Development Methodology:
	Section Two Introduction To VB:
	NET: Algorithm Development:

	Getting Started with VB:
	NET:

	Value Types and Operators:
	Control Structures:
	Procedures:
	Objects:
	Arrays:
	Problem Solving:
	NET Type System:
	Section Three Database Programming: Back Testing:
	Relational Databases:
	ADO:
	NET:

	Structured Query Language:
	Introduction to Data Structures:
	Advanced Data Structures:
	Section Four Advanced VB:
	NET: Implementation:

	Software Connectivity and Interoperability:
	Connecting to Trading Software:
	XML:
	XML Protocols in Financial Markets:
	Section Five Object-Oriented Programming: Risk Management:
	Unified Modeling Lanaguage:
	References:
	Acronyms:
	Index:
	Copyright © 2004 by The McGraw-Hill Companies, Inc:
	 Click here for terms of use:
	 Click here for terms:
	 of use:

